M Afzaal
Translation effects in fluorine doped tin oxide thin film properties by atmospheric pressure chemical vapor deposition
Afzaal, M; Yates, HM; Hodgkinson, JL
Authors
HM Yates
JL Hodgkinson
Abstract
In this work, the impact of translation rates in fluorine doped tin oxide (FTO) thin films using atmospheric pressure chemical vapour deposition (APCVD) were studied. We demonstrated that by adjusting the translation speeds of the susceptor, the growth rates of the FTO films varied and hence many of the film properties were modified. X-ray powder diffraction showed an increased preferred orientation along the (200) plane at higher translation rates, although with no actual change in the particle sizes. A reduction in dopant level resulted in decreased particle sizes and a much greater degree of (200) preferred orientation. For low dopant concentration levels, atomic force microscope (AFM) studies showed a reduction in roughness (and lower optical haze) with increased translation rate and decreased growth rates. Electrical measurements concluded that the resistivity, carrier concentration, and mobility of films were dependent on the level of fluorine dopant, the translation rate and hence the growth rates of the deposited films.
Citation
Afzaal, M., Yates, H., & Hodgkinson, J. (2016). Translation effects in fluorine doped tin oxide thin film properties by atmospheric pressure chemical vapor deposition. Coatings, 6(4), 43. https://doi.org/10.3390/coatings6040043
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 8, 2016 |
Online Publication Date | Oct 12, 2016 |
Publication Date | Oct 12, 2016 |
Deposit Date | Oct 21, 2016 |
Publicly Available Date | Apr 20, 2017 |
Journal | Coatings |
Electronic ISSN | 2079-6412 |
Publisher | MDPI |
Volume | 6 |
Issue | 4 |
Pages | 43 |
DOI | https://doi.org/10.3390/coatings6040043 |
Publisher URL | http://dx.doi.org/10.3390/coatings6040043 |
Related Public URLs | http://www.mdpi.com/journal/coatings |
Additional Information | Projects : Process Line Implementation for Applied Surface Nanotechnologies |
Files
FTO_proofs-2.pdf
(1.1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/