R Sankaranarayanan
Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak
Sankaranarayanan, R; Li, Y; Greensmith, DJ; Eisner, DA; Venetucci, L
Authors
Y Li
Prof David Greensmith D.J.Greensmith@salford.ac.uk
Associate Dean International Development
DA Eisner
L Venetucci
Abstract
In heart failure, a reduction in Ca transient amplitude and contractile dysfunction can by caused by Ca leak through the sarcoplasmic reticulum (SR) Ca channel (ryanodine receptor, RyR) and/or decreased activity of the SR Ca ATPase (SERCA). We have characterised the effects of two forms of Ca leak (Ca-sensitising and non-sensitising) on calcium cycling and compared with those of SERCA inhibition. We measured [Ca2+]i with fluo-3 in voltage-clamped rat ventricular myocytes. Increasing SR leak with either caffeine (to sensitise the RyR to Ca activation) or ryanodine (non-sensitising) had similar effects to SERCA inhibition: decreased systolic [Ca2+]i, increased diastolic [Ca2+]i and slowed decay. However, in the presence of isoproterenol, leak produced a biphasic decay of the Ca transient in the majority of cells while SERCA inhibition produced monophasic decay. Tetracaine reversed the effects of caffeine but not of ryanodine. When caffeine (1 mmol l−1) was added to a cell which displayed Ca waves, the wave frequency initially increased before waves disappeared and biphasic decay developed. Eventually (at higher caffeine concentrations), the biphasic decay was replaced by slow decay. We conclude that, in the presence of adrenergic stimulation, Ca leak can produce biphasic decay; the slow phase results from the leak opposing Ca uptake by SERCA. The degree of leak determines whether decay of Ca waves, biphasic or monophasic, occurs.
Citation
Sankaranarayanan, R., Li, Y., Greensmith, D., Eisner, D., & Venetucci, L. (2016). Biphasic decay of the Ca transient results from increased sarcoplasmic reticulum Ca leak. Journal of Physiology, 594(3), 611-623. https://doi.org/10.1113/JP271473
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 30, 2015 |
Online Publication Date | Nov 5, 2015 |
Publication Date | Jan 1, 2016 |
Deposit Date | Feb 3, 2016 |
Publicly Available Date | Apr 5, 2016 |
Journal | The Journal of Physiology |
Print ISSN | 0022-3751 |
Electronic ISSN | 1469-7793 |
Publisher | Wiley |
Volume | 594 |
Issue | 3 |
Pages | 611-623 |
DOI | https://doi.org/10.1113/JP271473 |
Publisher URL | http://dx.doi.org/10.1113/JP271473 |
Related Public URLs | http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1469-7793/ |
Files
Sankaranarayanan_et_al-2016-The_Journal_of_Physiology.pdf
(1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/3.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/3.0/
You might also like
The Role Of Interleukin-1β In Coronary Artery Disease
(2024)
Thesis
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search