X Deng
Bimagnetic h-Co/h-CoO nanotetrapods: preparation, nanoscale characterization, three-dimensional architecture and their magnetic properties
Deng, X; Yang, D; Tan, G; Li, X; Zhang, J; Liu, Q; Zhang, H; Mellors, NJ; Xue, D; Peng, Y
Authors
D Yang
G Tan
X Li
J Zhang
Q Liu
H Zhang
NJ Mellors
D Xue
Y Peng
Abstract
Well-defined bimagnetic h-Co decorated wurtzite h-CoO nanotetrapods with uniform size have been successfully fabricated by a one-pot thermal decomposition method for the first time, and their three-dimensional architecture, crystal structure, chemical phase and exchange bias effect are characterized at the nanoscale. It is found that individual bimagnetic h-Co/h-CoO nanotetrapods are made of a h-CoO nanotetrapod skeleton to which multiple nanocrystals of ferromagnetic metallic h-Co are directly attached. The chemical analysis shows that the mass ratio of h-CoO and h-Co is 65 : 35. The detailed investigations of the crystal structure reveal that both the h-CoO nanotetrapod skeleton and h-Co nanoparticles have hexagonal structure. The four pods of individual nanotetrapods are single crystals with the same [001] orientation along with their pod axes and grow together by twinning with (110) the twin interface and the 120° spatial boundary angle. The magnetic measurements reveal that the h-Co/h-CoO nanotetrapods have a surprisingly strong room temperature ferromagnetism and there exists a weak exchange coupling between the h-CoO nanotetrapod skeleton and the decorated h-Co tiny nanoparticles. It is believed that our new structural form of the bimagnetic h-Co/h-CoO nanotetrapods provides not only a smart functional 3D nanoarchitecture as building block in nanoelectronics and nanosensors, but also an ideal specimen for a further understanding of weak antiferromagnetic-ferromagnetic interaction.
Journal Article Type | Article |
---|---|
Publication Date | Jan 1, 2014 |
Deposit Date | Apr 29, 2015 |
Journal | Nanoscale |
Print ISSN | 2040-3364 |
Electronic ISSN | 2040-3372 |
Publisher | Royal Society of Chemistry |
Peer Reviewed | Peer Reviewed |
Volume | 6 |
Issue | 22 |
Pages | 13710-13718 |
DOI | https://doi.org/10.1039/C4NR02287D |
Publisher URL | http://dx.doi.org/10.1039/C4NR02287D |
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search