SH Muggleton
Are grammatical representations useful for learning from biological sequence data?— a case study
Muggleton, SH; Bryant, CH; Srinivasan, A; Whittaker, A; Topp, S; Rawlings, C
Authors
Abstract
This paper investigates whether Chomsky-like grammar representations are useful for learning cost-effective, comprehensible predictors of members of biological sequence families. The Inductive Logic Programming (ILP) Bayesian approach to learning from positive examples is used to generate a grammar for recognising a class of proteins known as human neuropeptide precursors (NPPs). Collectively, five of the co-authors of this paper, have extensive expertise on NPPs and general bioinformatics methods. Their motivation for generating a NPP grammar was that none of the existing bioinformatics methods could provide sufficient cost-savings during the search for new NPPs. Prior to this project experienced specialists at SmithKline Beecham had tried for many months to hand-code such a grammar but without success. Our best predictor makes the search for novel NPPs more than 100 times more efficient than randomly selecting proteins for synthesis and testing them for biological activity. As far as these authors are aware, this is both the first biological grammar learnt using ILP and the first real-world scientific application of the ILP Bayesian approach to learning from positive examples. A group of features is derived from this grammar. Other groups of features of NPPs are derived using other learning strategies. Amalgams of these groups are formed. A recognition model is generated for each amalgam using C4.5 and C4.5rules and its performance is measured using both predictive accuracy and a new cost function, Relative Advantage (RA). The highest RA was achieved by a model which includes grammar-derived features. This RA is significantly higher than the best RA achieved without the use of the grammar-derived features. Predictive accuracy is not a good measure of performance for this domain because it does not discriminate well between NPP recognition models: despite covering varying numbers of (the rare) positives, all the models are awarded a similar (high) score by predictive accuracy because they all exclude most of the abundant negatives.
Citation
Muggleton, S., Bryant, C., Srinivasan, A., Whittaker, A., Topp, S., & Rawlings, C. (2001). Are grammatical representations useful for learning from biological sequence data?— a case study. Journal of Computational Biology, 8(5), 493-521. https://doi.org/10.1089/106652701753216512
Journal Article Type | Article |
---|---|
Publication Date | Oct 1, 2001 |
Deposit Date | Feb 10, 2015 |
Publicly Available Date | Apr 5, 2016 |
Journal | Journal of Computational Biology |
Print ISSN | 1066-5277 |
Publisher | Mary Ann Liebert |
Peer Reviewed | Peer Reviewed |
Volume | 8 |
Issue | 5 |
Pages | 493-521 |
DOI | https://doi.org/10.1089/106652701753216512 |
Keywords | Bioinformatics, Machine Learning, Inductive Logic Programming, Cost Function, Grammatical Inference |
Publisher URL | http://dx.doi.org/10.1089/106652701753216512 |
Related Public URLs | http://www.liebertpub.com/ http://www.salford.ac.uk/computing-science-engineering/cse-academics/chris-bryant |
Additional Information | Funders : SmithKlineBeecham Projects : Using Machine Learning to Discover Diagnostic Sequence Motifs |
Files
bryant_jcb.pdf
(477 Kb)
PDF
You might also like
Pruning methods for rule induction
(2017)
Thesis
Pruning classification rules with instance reduction methods
(2015)
Journal Article
Preceding rule induction with instance reduction methods
(2013)
Conference Proceeding
Comparing the performance of object and object relational database systems on objects of varying complexity
(2012)
Conference Proceeding
Predicting functional upstream open reading frames in Saccharomyces cerevisiae
(2009)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search