J Sanchez-Curto
Efficient parallel implementation of the nonparaxial beam propagation method
Sanchez-Curto, J; Chamorro-Posada, P; McDonald, GS
Abstract
An efficient parallel implementation of a nonparaxial beam propagation method for the numerical study of the nonlinear Helmholtz equation is presented. Our solution focuses on minimizing communication and computational demands of the method which are dependent on a nonparaxiality parameter. Performance tests carried out on different types of parallel systems behave according theoretical predictions and show that our proposal exhibits a better behavior than those solutions based on the use of conventional parallel fast Fourier transform implementations. The application of our design is illustrated in a particularly demanding scenario: the study of dark solitons at interfaces separating two defocusing Kerr media, where it is shown to play a key role.
Citation
Sanchez-Curto, J., Chamorro-Posada, P., & McDonald, G. (2014). Efficient parallel implementation of the nonparaxial beam propagation method. Parallel Computing, 40(8), 394-407. https://doi.org/10.1016/j.parco.2014.06.003
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 4, 2014 |
Publication Date | Jun 14, 2014 |
Deposit Date | Aug 8, 2014 |
Journal | Parallel Computing |
Print ISSN | 0167-8191 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 40 |
Issue | 8 |
Pages | 394-407 |
DOI | https://doi.org/10.1016/j.parco.2014.06.003 |
Publisher URL | http://dx.doi.org/10.1016/j.parco.2014.06.003 |
Related Public URLs | http://www.journals.elsevier.com/parallel-computing/ |
Additional Information | References : [1] J.A. Fleck, L.R. Morris, M.D. Feit, Time-dependent propagation of high energy laser beams through the atmosphere, Appl. Phys. 10 (1976) 129–160. [2] A. Hasegawa, F. Tappert, Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. II. Normal dispersion, Appl. Phys. Lett. 23 (1973) 171–172. [3] T.R. Taha, M. Ablowitz, Analytical and numerical aspects of certain nonlinear evolution equations. II. Numerical, nonlinear Schrödinger equation, J. Comput. Phys. 55 (1984) 203–230. [4] R.H. Hardin, F.D. Tappert, Applications of the split-step Fourier method to the numerical solution of nonlinear and variable coefficient wave equations, SIAM Rev. Chron. 15 (1973) 423. [5] N. Akhmediev, A. Ankiewicz, J.M. Soto-Crespo, Does the nonlinear Schrödinger equation correctly describe beam propagation?, Opt Lett. 18 (1993) 411–413. [6] B. Crosignani, A. Yariv, S. Mookherjea, Nonparaxial spatial solitons and propagation-invariant pattern solutions in optical Kerr media, Opt. Lett. 29 (2004) 1254–1256. [7] A. Ciattoni, B. Crosignani, S. Mookherjea, A. Yariv, Nonparaxial dark solitons in optical Kerr media, Opt. Lett. 30 (2005) 516–518. [8] G. Fibich, Small beam nonparaxiality arrests self-focusing of optical beams, Phys. Rev. Lett. 76 (1996) 4356–4359. [9] P. Chamorro-Posada, G.S. McDonald, G.H.C. New, Nonparaxial solitons, J. Mod. Opt. 45 (1998) 1111–1121. [10] P. Chamorro-Posada, G.S. McDonald, G.H.C. New, Propagation properties of non-paraxial spatial solitons, J. Mod. Opt. 47 (2000) 1877–1886. [11] P. Chamorro-Posada, G.S. McDonald, G.H.C. New, Exact soliton solutions of the nonlinear Helmholtz equation, J. Opt. Soc. Am. B 19 (2002) 1216–1217. [12] P. Chamorro-Posada, G. McDonald, Helmholtz dark solitons, Opt. Lett. 28 (2003) 825–827. [13] J.M. Christian, G.S. McDonald, P. Chamorro-Posada, Helmholtz–Manakov solitons, Phys. Rev. E 74 (2006) 066612. [14] J.M. Christian, G.S. McDonald, P. Chamorro-Posada, Helmholtz bright and boundary solitons, J. Phys. A: Math. Theor. 40 (2007) 1545–1560. [15] J.M. Christian, G.S. McDonald, R. Potton, P. Chamorro-Posada, Bistable Helmholtz solitons in cubic-quintic optical materials, Phys. Rev. A 76 (2007) 033833. [16] P. Chamorro-Posada, G.S. McDonald, Spatial Kerr soliton collision at arbitrary angles, Phys. Rev. E 74 (2006) 036609. [17] J. Sánchez-Curto, P. Chamorro-Posada, G.S. McDonald, Helmholtz solitons at nonlinear interfaces, Opt. Lett. 32 (2007) 1126–1128. [18] J. Sánchez-Curto, P. Chamorro-Posada, G.S. McDonald, Dark solitons at nonlinear interfaces, Opt. Lett. 35 (2010) 1347–1349. [19] J. Sánchez-Curto, P. Chamorro-Posada, G.S. McDonald, Black and gray Helmholtz–Kerr soliton refraction, Phys. Rev. A 83 (2011) 013828. [20] G. Fibich, S. Tsynkov, High-order two-way artificial boundary conditions for nonlinear wave propagation with backscattering, J. Comput. Phys. 171 (2001) 632–677. [21] G. Fibich, S. Tsynkov, Numerical solution of the nonlinear Helmholtz equation using nonorthogonal expansions, J. Comput. Phys. 210 (2005) 183–224. [22] P. Chamorro-Posada, G.S. McDonald, G.H.C. New, Non-paraxial beam propagation methods, Opt. Commun. 192 (2001) 1–12. [23] G. Baruch, G. Fibich, S. Tsynkov, Simulations of the nonlinear Helmholtz equation: arrest of beam collapse, nonparaxial solitons and counterpropagating beams, Opt. Express 16 (2008) 13323–13329. [24] J.W. Cooley, J.W. Tukey, An algorithm for the machine calculation of complex Fourier series, Math. Comput. 19 (1965) 297–301. [25] C. van Loan, Computational Frameworks for the Fast Fourier Transform, Society for Industrial and Applied Mathematics SIAM, Philadelphia, PA, 1992. [26] J. Dongarra, I. Foster, G. Fox, W. Gropp, K. Kennedy, L. Torczon, A. White, Sourcebook of Parallel Computing, Morgan Kaufmann Publishers, San Francisco, CA, 2003. [27] A. Grama, A. Gupta, G. Karypis, V. Kumar, Introduction to Parallel Computing, Pearson Education, Harlow, England, 2003. [28] P.N. Swarztrauber, Multiprocessor FFTs, Parallel Comput. 5 (1987) 197–210. [29] S.L. Johnsson, M. Jacquemin, R.L. Krawitz, Communication efficient multi-processor FFT, J. Comput. Phys. 102 (1992) 381–397. [30] D.H. Bailey, FFTs in external and hierarchical memory, J. Supercomput. 4 (1990) 23–35. [31] A. Averbuch, E. Gabber, B. Gordissky, Y. Medan, A parallel FFT on an MIMD machine, Parallel Comput. 15 (1990) 61–74. [32] D. Takahashi, A parallel 1-D FFT algorithm for the Hitachi SR8000, Parallel Comput. 29 (2003) 679–690. [33] M. Frigo, S.G. Johnson, The design and implementation of FFTW3, Proc. IEEE 93 (2005) 216–231. [34] T.R. Taha, X. Xu, Parallel split-step Fourier methods for the coupled nonlinear Schrödinger type equations, J. Supercomput. 32 (2005) 5–23. [35] J. Guo, T.R. Taha, Parallel implementation of the split-step and pseudospectral methods for solving higher KdV equations, Math. Comput. Simul. 62 (2003) 41–51. [36] M. Snir, S. Otto, S.-H. Lederman, D. Walker, J. Dongarra, MPI – The Complete Reference, The MPI Core, vol. 1, The MIT Press, Cambridge, MA, 1998. [37] R.C. Agarwal, F.G. Gustafson, M. Zubair, A high performance parallel algorithm for 1-D FFT, in: Proceedings of the 1994 Conference on Supercomputing, IEEE Computer Society Press, 1994, pp. 34–40. [38] S.M. Zoldi, V. Ruban, A. Zenchuk, S. Burtsev, Parallel implementations of the split-step Fourier method for solving nonlinear Schrödinger systems, SIAM News 32 (1999) 1–5. [39] J. Sánchez-Curto, P. Chamorro-Posada, On a faster parallel implementation of the split-step Fourier method, Parallel Comput. 34 (2008) 539–549. [40] A.V. Oppenheim, R.W. Schafer, Discrete-Time Signal Processing, Prentice-Hall International Inc., Englewood Cliffs, NJ, 1999. [41] S. Winograd, On computing the discrete Fourier transform, Math. Comput. 32 (1978) 175–199. [42] R.C. Agarwal, C.S. Burrus, Fast one-dimensional digital convolution by multidimensional techniques, IEEE Trans. Acoust. Speech Signal Process. 22 (1974) 1–10. [43] R.C. Agarwal, J.W. Cooley, New algorithms for digital convolution, IEEE Trans. Acoust. Speech Signal Process. 25 (1977) 392–410. [44] P. Chamorro-Posada, G.S. McDonald, Time domain analysis of Helmholtz soliton propagation using the TLM method, J. Nonlinear Opt. Phys. Mater. 21 (2012) 1250031. [45] W.J. Tomlinson, R.J. Hawkins, A.M. Weiner, J.P. Heritage, R.N. Thurston, Dark optical solitons with finite-width background pulses, J. Opt. Soc. Am. B 6 (1989) 329–334. [46] Yu.S. Kivshar, X. Yang, Dark solitons on backgrounds of finite extent, Opt. Commun. 107 (1994) 93–98. [47] Yu.S. Kivshar, B. Luther-Davies, Dark optical solitons: physics and applications, Phys. Rep. 298 (1998) 81–197. [48] J. Sánchez-Curto, P. Chamorro-Posada, G.S. McDonald, Nonlinear interfaces: Helmholtz bright and black soliton splitting at nonlinear interfaces, Phys. Rev. A 85 (2012) 013836. Funders : Spanish Ministerio de Educación y Ciencia;Junta de Castilla y León Grant Number: TEC2010-21303-C04-04 Grant Number: VA300A12-1 |
You might also like
Spontaneous spatial fractal pattern formation in dispersive systems
(2017)
Journal Article
Diffraction of Weierstrass scalar fractal waves by circular apertures : symmetry and patterns, complexity and dimension
(2015)
Presentation / Conference
Unstable resonators with polygon and von Koch-type boundary conditions : virtual source modelling of fractal eigenmodes
(2015)
Presentation / Conference
Nonlinear Helmholtz wave refraction & Goos-Hänchen shifts in nonparaxial optics : angles and interfaces, solitons and Snell's law
(2015)
Presentation / Conference
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search