C Bostock
Vector spatial solitons beyond the slowly-varying envelope approximation
Bostock, C; Christian, JM; McDonald, GS
Authors
Dr James Christian J.Christian@salford.ac.uk
Lecturer
Dr Graham McDonald G.S.McDonald@salford.ac.uk
Associate Professor/Reader
Abstract
The simultaneous propagation of two spatially-overlapping and differently-coloured laser beams (e.g., at infra-red and green wavelengths) in photonic waveguides has attracted much attention since the early 1990s [Shalaby & Barthelemy, IEEE J. Quantum Electron. vol. 28, 2736 (1992)]. Historic analyses of the two-colour optical propagation problem have routinely adopted models of the nonlinear-Schrödinger class that are inherently bound by the slowly-varying envelope approximation (SVEA) [De La Fuente & Barthelemy, Opt. Commun. vol. 88, 419 (1992)]. While desirable in some respects (e.g., by considerable simplification of the governing equations), the SVEA can place some strong physical constraints on the validity of predictions made by Schrödinger-type systems in context of wave optics and the theory of nonlinear beams. Our approach avoids such limitations by dealing with the more general (i.e., un-approximated) Helmholtz-type governing equations.
In this presentation, we will deliver a concise overview of our investigations into a model of two-colour light beams beyond the SVEA. A plethora of new results will be provided, including the derivation of four exact analytical vector soliton families. A novel linearization technique, which generalizes conventional methods [Agrawal, J. Opt. Soc. Am. B vol. 6, 1072 (1990)] to capture the Helmholtz type of governing equation, is also developed to assess the resilience of the system against the emergence of spontaneous instabilities. Theoretical calculations are supported by fully-nonlinear computer simulations. We expect our results to play a key role in the design of future photonic devices that incorporate angular nonparaxial-beam configurations into their two-colour operational architecture and geometry.
Citation
Bostock, C., Christian, J., & McDonald, G. Vector spatial solitons beyond the slowly-varying envelope approximation. Poster presented at Salford Postgraduate Annual Research Conference (SPARC 2013), University of Salford
Presentation Conference Type | Poster |
---|---|
Conference Name | Salford Postgraduate Annual Research Conference (SPARC 2013) |
Conference Location | University of Salford |
End Date | Jun 6, 2013 |
Deposit Date | Jun 11, 2013 |
Publicly Available Date | Apr 5, 2016 |
Additional Information | Event Type : Conference |
Files
CBostock_SPARC2013_POSTER.pdf
(9 Kb)
PDF
You might also like
Julia sets in relaxed Schröder and Newton-Raphson maps: periodic points, escape points, symmetry-breaking
(2024)
Presentation / Conference
Extensible-pendulum and double-pendulum problems: damping & periodic forcing, chaos & fractals
(2024)
Presentation / Conference
Dynamics and chaos in extensible pendulum systems
(2024)
Presentation / Conference
The Newton-Raphson fractal
(2023)
Other