C Bostock
Two-colour spatial optical solitons:
new stability analyses for off-axis propagation
Bostock, C; Christian, JM; McDonald, GS
Authors
Dr James Christian J.Christian@salford.ac.uk
Lecturer
Dr Graham McDonald G.S.McDonald@salford.ac.uk
Associate Professor/Reader
Abstract
Two-colour spatial optical solitons comprise a pair of stationary continuous-wave light beams at two well-separated temporal frequencies. The components overlap in the propagation plane and are coupled through system nonlinearity (e.g., the Kerr-type response in the host material of a planar waveguide) [Opt. Commun. 88, 419 (1992)]. Such configurations have huge potential for future photonic device applications such as multi-channel waveguiding [Opt. Lett. 19, 945 (1994)]. To date, analyses of such geometries have been mainly within the arena of paraxial wave optics.
Our research goes beyond the slowly-varying envelope approximation, into regimes where two-colour light fields may propagate and interact off-axis at arbitrary angles and orientations. The coupled governing equations are of the nonlinear Helmholtz (as opposed to Schrödinger) type [Phys. Rev. E 74, 066612 (2006)]. In an essential way, this more general system involves the interplay between nonlinear (self- and cross-focusing) processes and, crucially, fully two-dimensional diffraction.
We will present the first analysis of off-axis two-colour light fields. Four families of exact analytical two-colour soliton (bright-bright and bright-dark for a focusing Kerr nonlinearity; dark-bright and dark-dark for defocusing) have been derived, each of which has co- and counter-propagation classes that are related by geometrical transformations. Solution of the plane wave modulational instability problem, obtained by generalizing our established Helmholtz linearization techniques [J. Phys. A 39, 1535 (2006)] to vector regimes, has provided further insight into the propagation properties of those two-colour solitons with dark-type components. Unexpected regions of stability, mediated by cross-focusing, have been uncovered in certain parameter regimes.
Citation
new stability analyses for off-axis propagation. Presented at National Photonics Conference, Photon12, University of Durham, UK
Presentation Conference Type | Other |
---|---|
Conference Name | National Photonics Conference, Photon12 |
Conference Location | University of Durham, UK |
Publication Date | Jan 1, 2012 |
Deposit Date | Jul 17, 2012 |
Publicly Available Date | Apr 5, 2016 |
Publisher URL | http://www.photon.org.uk/home |
Additional Information | Event Type : Conference |
Files
Accepted Version
(8 Kb)
PDF
Version
Abstract
You might also like
Julia sets in relaxed Schröder and Newton-Raphson maps: periodic points, escape points, symmetry-breaking
(2024)
Presentation / Conference
Extensible-pendulum and double-pendulum problems: damping & periodic forcing, chaos & fractals
(2024)
Presentation / Conference
Dynamics and chaos in extensible pendulum systems
(2024)
Presentation / Conference
The Newton-Raphson fractal
(2023)
Other
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search