EA McCoy
Nonparaxial refraction and giant Goos-Hänchen shifts
at nonlinear optical interfaces
McCoy, EA; Christian, JM; McDonald, GS
Authors
Dr James Christian J.Christian@salford.ac.uk
Lecturer
Dr Graham McDonald G.S.McDonald@salford.ac.uk
Associate Professor/Reader
Abstract
The scattering of spatial optical solitons (self-localizing beams of laser light) at the interface between two dissimilar materials is a problem of fundamental importance in nonlinear photonics. Theoretical analyses must take into account a highly complex interplay between diffraction, self-lensing, finite beam waists, and discontinuities in both the linear and nonlinear properties of the host medium at the boundary. Over the past three decades, various research groups worldwide have resorted to simplified mathematical descriptions based on the universal nonlinear Schrödinger equation [A.B. Aceves et al., Phys. Rev. A vol. 39, 1809 (1989)].
Our approach deploys the nonlinear Helmholtz equation [J. Sánchez-Curto et al., Phys. Rev. A vol. 85, 013836 (2012)]. We have been able to relax the strong angular constraint that is inherent to essentially all previously-published works in this arena. More specifically, we can now solve the class of problem where beam angles of incidence, reflection, and refraction may be arbitrarily large.
A compact law governing arbitrary-angle refraction will be discussed. Theoretical predictions are in excellent agreement with those obtained from exhaustive numerical simulations. Striking examples will also be given of Goos-Hänchen (GH) shifts (a phenomenon whereby, close to the critical angle of incidence, the reflected beam undergoes a displacement along the interface) [F. Goos and H. Hänchen, Ann. Phys. vol. 1, 333 (1947)]. Such shifts are an inherent property of beam-interface interactions, and they can be strongly enhanced in the presence of nonlinearity. We will report what we believe to be the largest GH shifts uncovered to date.
Citation
at nonlinear optical interfaces. Presented at Second Annual Student Conference on Complexity Science (SCCS 2012), University of Gloucestershire
Presentation Conference Type | Other |
---|---|
Conference Name | Second Annual Student Conference on Complexity Science (SCCS 2012) |
Conference Location | University of Gloucestershire |
Publication Date | Jan 1, 2012 |
Deposit Date | Jul 16, 2012 |
Publicly Available Date | Apr 5, 2016 |
Publisher URL | http://bccs.bristol.ac.uk/events/SCCS/ |
Additional Information | Event Type : Conference |
Files
Accepted Version
(9 Kb)
PDF
Version
Abstract
You might also like
Julia sets in relaxed Schröder and Newton-Raphson maps: periodic points, escape points, symmetry-breaking
(2024)
Presentation / Conference
Extensible-pendulum and double-pendulum problems: damping & periodic forcing, chaos & fractals
(2024)
Presentation / Conference
Dynamics and chaos in extensible pendulum systems
(2024)
Presentation / Conference
The Newton-Raphson fractal
(2023)
Other