Skip to main content

Research Repository

Advanced Search

Di-hydrogen in cation-substituted zeolite-X - an inelastic neutron scattering study

Ramirez -Cuesta, AJ; Mitchell, PCH; Ross, DK; Georgiev, PA; Anderson, PA; Langmi, HW; Book, D

Authors

AJ Ramirez -Cuesta

PCH Mitchell

DK Ross

PA Georgiev

PA Anderson

HW Langmi

D Book



Abstract

An inelastic neutron scattering (INS) study of the rotational–vibrational spectrum of dihydrogen sorbed by zeolite X having substituted sodium, calcium and zinc cations is reported. The rotational–vibrational spectrum of H2 was observed at low energy transfer (below ca. 25 meV, 202 cm21); the vibration was that of the H2 molecule against the binding site (H2–X, not H–H). The vibration frequency was proportional to the polarising power of
the cation (Na+ , Ca2+ , Zn2+). Polarisation of the H2 molecule dominated the interaction of H2 with this binding site. The total scattering intensity was proportional to the dihydrogen dose. However the vibrational intensities became constant at ca. 0.3 wt% showing that the H2 binding sites had saturated. Additional dihydrogen appeared as unbound or weakly bound dihydrogen exhibiting recoil.

Citation

Ramirez -Cuesta, A., Mitchell, P., Ross, D., Georgiev, P., Anderson, P., Langmi, H., & Book, D. (2007). Di-hydrogen in cation-substituted zeolite-X - an inelastic neutron scattering study. Journal of Materials Chemistry, 17, 2533-2539. https://doi.org/10.1039/b701167a

Journal Article Type Article
Publication Date Jan 1, 2007
Deposit Date Apr 23, 2012
Journal Journal of Materials Chemistry
Print ISSN 0959-9428
Publisher Royal Society of Chemistry
Peer Reviewed Peer Reviewed
Volume 17
Pages 2533-2539
DOI https://doi.org/10.1039/b701167a
Publisher URL http://dx.doi.org/10.1039/b701167a
Additional Information References : 1 A. Zu¨ ttel, Naturwissenschaften, 2004, 91, 157. 2 X. Z. Y. P. Zhang, W. Y. Sun and L. Zhou, J. Phys. Chem. B, 2006, 110, 22596. 3 G. T. Palomino, M. R. L. Carayol and C. O. Area´n, J. Mater. Chem., 2006, 16, 2884. 4 H. W. Langmi, D. Book, A. Walton, S. R. Johnson, M. M. Al-Mamouri, J. D. Speight, P. P. Edwards, I. R. Harris and P. A. Anderson, J. Alloys Compd., 2005, 404–406, 637. 5 L. Regli, A. Zecchina, J. G. Vitillo, D. Cocina, G. Spoto, C. Lamberti, K. P. Lillerud, U. Olsbye and S. Bordiga, Phys. Chem. Chem. Phys., 2005, 7, 3197. 6 H. W. Langmi, A. Walton, M. M. Al-Mamouri, S. R. Johnson, D. Book, J. D. Speight, P. P. Edwards, I. Gameson, P. A. Anderson and I. R. Harris, J. Alloys Compd., 2003, 356, 710. 7 S. B. Kayiran and F. L. Darkrim, Surf. Interface Anal., 2002, 34, 100. 8 MH2006 International Symposium on Metal–Hydrogen Systems— Fundamentals and Applications, Hawaii, October 2006. A. J. Ramirez-Cuesta, P. C. H. Mitchell, D. K. Ross, P. A. Georgiev, P. A. Anderson, H. W. Langmi and D. Book, J. Alloys Compd., 2007, DOI: 10.1016/j.jallcom.2006.12.030. See also A. J. Ramirez- Cuesta and P. C. H. Mitchell, Catal. Today, 2007, 120, 368. 9 P. C. H. Mitchell, S. F. Parker, A. J. Ramirez-Cuesta and J. Tomkinson, Vibrational Spectroscopy with Neutrons with Applications in Chemistry, Biology, Materials Science and Catalysis. Series on Neutron Techniques and Applications—Vol. 3, ed. J. L. Finney and D. L. Worcester, World Scientific, London, 2005. 10 J. A. Young and J. U. Koppel, Phys. Rev., 1964, 135, A603. 11 A. J. Ramirez-Cuesta, P. C. H. Mitchell and S. F. Parker, J. Mol. Catal. A: Chem., 2001, 167, 217. 12 A. J. Ramirez-Cuesta, P. C. H. Mitchell, S. F. Parker and P. A. Barrett, Chem. Commun., 2000, 1257. 13 P. A. Georgiev, D. K. Ross, A. De Monte, U. Montaretto- Marullo, R. A. H. Edwards, A. J. Ramirez-Cuesta and D. Colognesi, J. Phys.: Condens. Matter, 2004, 16, L73. 14 P. A. Georgiev, D. K. Ross, A. De Monte, U. Montaretto- Marullo, R. A. H. Edwards, A. J. Ramirez-Cuesta, M. A. Adams and D. Colognesi, Carbon, 2005, 43, 895. 15 C. R. Anderson, D. F. Coker, J. Eckert and A. L. R. Bug, J. Chem. Phys., 1999, 111, 7599. 16 A. L. R. Bug and G. J. Martyna, Chem. Phys., 2000, 261, 89. 17 J. Eckert, J. M. Nicol, J. Howard and F. R. Trouw, J. Phys. Chem., 1996, 100, 10646. 18 J. Eckert and G. J. Kubas, J. Phys. Chem., 1993, 97, 2378. 19 J. A. Mackinnon, J. Eckert, D. F. Coker and A. L. R. Bug, J. Chem. Phys., 2001, 114, 10137. 20 B. L. Mojet, J. Eckert, R. A. van Santen, A. Albinati and R. E. Lechner, J. Am. Chem. Soc., 2001, 123, 8147. 21 J. M. Nicol, J. Eckert and J. Howard, J. Phys. Chem., 1988, 92, 7117. 22 I. F. Silvera, Rev. Mod. Phys., 1980, 52, 393. 23 V. B. Kazansky, V. Y. Borovkov and H. G. Karge, J. Chem. Soc., Faraday Trans., 1997, 93, 1843. 24 C. A. Coulson, Electricity, Oliver and Boyd, Edinburgh, 3rd edn, 1953. 25 J. W. Ward, Trans. Faraday Soc., 1971, 67, 1489. 26 N. T. Tam, P. Tsai and R. P. Cooney, Aust. J. Chem., 1978, 31, 255. 27 L. Jankovic and P. Komadel, J. Catal., 2003, 218, 227. 28 A. Yu. Khodakov, S. L. M. Kustov, V. B. Kazansky and C. Williams, J. Chem. Soc., Faraday Trans., 1993, 89, 1393 (The authors plot the frequency shift of adsorbed methane vs. 1/r2 for Mg2+, Ca2+, Sr2+,Ba2+. However, when we include Na+ and plot vs. z/r we obtain a much better linear correlation, R2 0.96 as opposed to R2 0.78 for a plot vs. z/r2). 29 E. Garrone, B. Bonelli, C. Lamberti, B. Civalleri, M. Rocchia, P. Roy and C. O. Arean, J. Chem. Phys., 2002, 117, 10274. 30 C. O. Arean, G. T. Palomino, A. Zecchina, G. Spoto, S. Bordiga and P. Roy, Phys. Chem. Chem. Phys., 1999, 1, 4139. 31 F. J. Torres, B. Civalleri, C. Pisani and P. Ugliengo, J. Phys. Chem. B, 2006, 110, 10467. 32 J. G. Vitillo, A. Damin, A. Zecchina and G. Ricchiardi, J. Chem. Phys., 2005, 122, 114311. 33 C. O. Arean, G. T. Palomino, E. Garrone, D. Nachtigallova and P. Nachtigall, J. Phys. Chem. B, 2006, 110, 395. 34 F. M. Mulder, T. J. Dingemans, H. G. Schimmel, A. J. Ramirez- Cuesta and G. J. Kearley, Hydrogen adsorption strength and sites in the metal organic framework MOFs, submitted. 35 F. M. Mulder, T. J. Dingemans, M. Wagemaker and G. J. Kearley, Chem. Phys., 2005, 317, 113. This




Downloadable Citations