EA McCoy
Scattering of Helmholtz spatial optical solitons at material interfaces
McCoy, EA; Christian, JM; Mcdonald, GS
Abstract
The behaviour of light at the interface between different materials essentially defines the entire field of Optics. Indeed, the reflection and refraction properties of plane waves at the boundary between two dissimilar linear dielectrics are analysed in many classic textbooks on
electromagnetism. Our research tackles geometries that involve the interplay between diffraction (linear broadening) and self-focusing (nonlinear material response) when the incident light is in the form of a spatial soliton (self-collimated, self-stabilizing optical beam). Such systems are driven and dominated by complex light-medium feedback loops. The pivotal work of Aceves and co-workers some two decades ago investigated spatial solitons impinging on the interface between Kerr-type materials. Whilst these groundbreaking studies were highly instructive, their paraxial approach restricts angles of incidence, reflection and refraction to small values. Our recent proposal of a generalised Snell law, based on analysis of a nonlinear Helmholtz equation, lifts the angular limitation inherent to paraxial theory. This generalisation comprises a single multiplicative factor that allows for both transverse effects and discontinuities in material properties. Here, we will detail our latest research into bright spatial soliton refraction. In particular, our interest lies with arbitrary-angle scattering at the planar boundary between optical materials
with universal non-Kerr nonlinearities: single power-law and cubic-quintic. This is the first time that arbitrary-angle refraction phenomena have been considered within these new material contexts. The derivation of our novel Helmholtz-Snell law will be described, and simulations demonstrating excellent agreement with theoretical predictions presented.
Citation
McCoy, E., Christian, J., & Mcdonald, G. (2011, August). Scattering of Helmholtz spatial optical solitons at material interfaces. Presented at First Annual Student Conference on Complexity Science, Winchester University, UK
Presentation Conference Type | Lecture |
---|---|
Conference Name | First Annual Student Conference on Complexity Science |
Conference Location | Winchester University, UK |
Start Date | Aug 4, 2011 |
End Date | Aug 7, 2011 |
Publication Date | Aug 4, 2011 |
Deposit Date | Oct 12, 2011 |
Publicly Available Date | Apr 5, 2016 |
Publisher URL | http://server7.web-mania.com/users/NcckukLe/ |
Additional Information | Event Type : Conference |
Files
Accepted Version
(130 Kb)
PDF
You might also like
Spontaneous spatial fractal pattern formation in dispersive systems
(2017)
Journal Article
Diffraction of Weierstrass scalar fractal waves by circular apertures : symmetry and patterns, complexity and dimension
(2015)
Presentation / Conference
Unstable resonators with polygon and von Koch-type boundary conditions : virtual source modelling of fractal eigenmodes
(2015)
Presentation / Conference
Nonlinear Helmholtz wave refraction & Goos-Hänchen shifts in nonparaxial optics : angles and interfaces, solitons and Snell's law
(2015)
Presentation / Conference
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search