Prof Osman Beg O.A.Beg@salford.ac.uk
Professor
The present analysis discusses the solute transport process in a steady 2D (axial and radial) laminar flow of blood through a permeable, finite length capillary. Blood is treated as a homogeneous Newtonian fluid and the solute is absorbed at the capillary wall with a linear irreversible reaction rate. The velocity profile is obtained by a regular perturbation technique, whereas the transport coefficients depicted by the Gill generalized dispersion model are solved numerically. A number of different scenarios are considered, namely transport with no-reaction, weak absorption, strong absorption, low filtration or high filtration, etc. In the initial stages, the temporal behaviour of the dispersion coefficient is identical to those cases when there is no radial velocity. For the combined effect of radial and axial velocities, however, the dispersion coefficient is lower for a high absorption rate than for a weak absorption rate. Diffusion is accelerated with higher values of filtration coefficient. Owing to the opposite effects of radial diffusion and radial velocity, the solute particles require more time to reach the steady state. The analysis finds applications in, for example, reactive nutrient and pharmacological transport in capillary hemodynamics.
Journal Article Type | Article |
---|---|
Acceptance Date | Apr 25, 2022 |
Online Publication Date | May 17, 2022 |
Deposit Date | May 25, 2022 |
Publicly Available Date | May 25, 2022 |
Journal | Archives of Mechanics |
Print ISSN | 0373-2029 |
Electronic ISSN | 2083-8514 |
DOI | https://doi.org/10.24423/aom.3955 |
Publisher URL | https://am.ippt.pan.pl/am/article/view/3955 |
Related Public URLs | https://am.ippt.pan.pl/am/index |
Published Version
(1.2 Mb)
PDF
Licence
http://creativecommons.org/licenses/by/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
Simulation of magneto-nano-bioconvective coating flow with blowing and multiple slip effects
(2024)
Journal Article
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search