Todd C. Pataky
New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM)
Pataky, Todd C.; Caravaggi, Paolo; Savage, Russell; Parker, Daniel; Goulermas, John Y.; Sellers, William I.; Crompton, Robin H.
Authors
Paolo Caravaggi
Russell Savage
Dr Daniel Parker D.J.Parker1@salford.ac.uk
Lecturer in Digital Health
John Y. Goulermas
William I. Sellers
Robin H. Crompton
Abstract
This study investigates the relation between walking speed and the distribution of peak plantar pressure and compares a traditional ten-region subsampling (10RS) technique with a new technique: pedobarographic statistical parametric mapping (pSPM). Adapted from cerebral fMRI methodology, pSPM is a digital image processing technique that registers foot pressure images such that homologous structures optimally overlap, thereby enabling statistical tests to be conducted at the pixel level. Following previous experimental protocols, we collected pedobarographic records from 10 subjects walking at three different speeds: slow, normal, and fast. Walking speed was recorded and correlated with the peak pressures extracted from the 10 regions, and subsequently with the peak pixel data extracted after pSPM preprocessing. Both methods revealed significant positive correlation between peak plantar pressure and walking speed over the rearfoot and distal forefoot after Bonferroni correction for multiple comparisons. The 10RS analysis found positive correlation in the midfoot and medial proximal forefoot, but the pixel data exhibited significant negative correlation throughout these regions (p<5×10−5). Comparing the statistical maps from the two approaches shows that subsampling may conflate pressure differences evident in pixel-level data, obscuring or even reversing statistical trends. The negative correlation observed in the midfoot implies reduced longitudinal arch collapse with higher walking speeds. We infer that this results from pre- or early-stance phase muscle activity and speculate that preferred walking speed reflects, in part, a balance between the energy required to tighten the longitudinal arch and the apparent propulsive benefits of the stiffened arch.
Citation
Pataky, T. C., Caravaggi, P., Savage, R., Parker, D., Goulermas, J. Y., Sellers, W. I., & Crompton, R. H. (2008). New insights into the plantar pressure correlates of walking speed using pedobarographic statistical parametric mapping (pSPM). Journal of Biomechanics, 41(9), 1987-1994. https://doi.org/10.1016/j.jbiomech.2008.03.034
Journal Article Type | Article |
---|---|
Publication Date | May 22, 2008 |
Deposit Date | Sep 1, 2023 |
Journal | Journal of Biomechanics |
Print ISSN | 0021-9290 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 41 |
Issue | 9 |
Pages | 1987-1994 |
DOI | https://doi.org/10.1016/j.jbiomech.2008.03.034 |
You might also like
Validity and reliability of the XSENSOR in-shoe pressure measurement system
(2023)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search