Skip to main content

Research Repository

Advanced Search

Weed Identification by Single-Stage and Two-Stage Neural Networks: A Study on the Impact of Image Resizers and Weights Optimization Algorithms

Saleem, Muhammad Hammad; Velayudhan, Kesini Krishnan; Potgieter, Johan; Arif, Khalid Mahmood

Weed Identification by Single-Stage and Two-Stage Neural Networks: A Study on the Impact of Image Resizers and Weights Optimization Algorithms Thumbnail


Authors

Kesini Krishnan Velayudhan

Johan Potgieter

Khalid Mahmood Arif



Abstract

The accurate identification of weeds is an essential step for a site-specific weed management system. In recent years, deep learning (DL) has got rapid advancements to perform complex agricultural tasks. The previous studies emphasized the evaluation of advanced training techniques or modifying the well-known DL models to improve the overall accuracy. In contrast, this research attempted to improve the mean average precision (mAP) for the detection and classification of eight classes of weeds by proposing a novel DL-based methodology. First, a comprehensive analysis of single-stage and two-stage neural networks including Single-shot MultiBox Detector (SSD), You look only Once (YOLO-v4), EfficientDet, CenterNet, RetinaNet, Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully Convolutional Network (RFCN), has been performed. Next, the effects of image resizing techniques along with four image interpolation methods have been studied. It led to the final stage of the research through optimization of the weights of the best-acquired model by initialization techniques, batch normalization, and DL optimization algorithms. The effectiveness of the proposed work is proven due to a high mAP of 93.44% and validated by the stratified k-fold cross-validation technique. It was 5.8% improved as compared to the results obtained by the default settings of the best-suited DL architecture (Faster RCNN ResNet-101). The presented pipeline would be a baseline study for the research community to explore several tasks such as real-time detection and reducing the computation/training time. All the relevant data including the annotated dataset, configuration files, and inference graph of the final model are provided with this article. Furthermore, the selection of the DeepWeeds dataset shows the robustness/practicality of the study because it contains images collected in a real/complex agricultural environment. Therefore, this research would be a considerable step toward an efficient and automatic weed control system.

Citation

Saleem, M. H., Velayudhan, K. K., Potgieter, J., & Arif, K. M. (in press). Weed Identification by Single-Stage and Two-Stage Neural Networks: A Study on the Impact of Image Resizers and Weights Optimization Algorithms. Frontiers in Plant Science, 13, https://doi.org/10.3389/fpls.2022.850666

Journal Article Type Article
Acceptance Date Mar 11, 2022
Online Publication Date Apr 25, 2022
Deposit Date Feb 17, 2024
Publicly Available Date Feb 20, 2024
Journal Frontiers in Plant Science
Publisher Frontiers Media
Peer Reviewed Peer Reviewed
Volume 13
DOI https://doi.org/10.3389/fpls.2022.850666
Keywords Plant Science

Files





You might also like



Downloadable Citations