Skip to main content

Research Repository

Advanced Search

In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods

Tóth, Fanni; Moftakhar, Zahra; Sotgia, Federica; Lisanti, Michael P.

In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods Thumbnail


Authors

Fanni Tóth

Zahra Moftakhar

Federica Sotgia

Michael P. Lisanti



Contributors

Yasumichi Inoue
Editor

Abstract

Although cellular senescence was originally defined as an irreversible form of cell cycle arrest, in therapy-induced senescence models, the emergence of proliferative senescence-escaped cancer cells has been reported by several groups, challenging the definition of senescence. Indeed, senescence-escaped cancer cells may contribute to resistance to cancer treatment. Here, to study senescence escape and isolate senescence-escaped cells, we developed novel flow cytometry-based methods using the proliferation marker Ki-67 and CellTrace CFSE live-staining. We investigated the role of a novel senescence marker (DPP4/CD26) and a senolytic drug (azithromycin) on the senescence-escaping ability of MCF-7 and MDA-MB-231 breast cancer cells. Our results show that the expression of DPP4/CD26 is significantly increased in both senescent MCF-7 and MDA-MB-231 cells. While not essential for senescence induction, DPP4/CD26 contributed to promoting senescence escape in MCF-7 cells but not in MDA-MB-231 cells. Our results also confirmed the potential senolytic effect of azithromycin in senescent cancer cells. Importantly, the combination of azithromycin and a DPP4 inhibitor (sitagliptin) demonstrated a synergistic effect in senescent MCF-7 cells and reduced the number of senescence-escaped cells. Although further research is needed, our results and novel methods could contribute to the investigation of the mechanisms of senescence escape and the identification of potential therapeutic targets. Indeed, DPP4/CD26 could be a promising marker and a novel target to potentially decrease senescence escape in cancer.

Citation

Tóth, F., Moftakhar, Z., Sotgia, F., & Lisanti, M. P. (in press). In Vitro Investigation of Therapy-Induced Senescence and Senescence Escape in Breast Cancer Cells Using Novel Flow Cytometry-Based Methods. Cells, 13(10), 841. https://doi.org/10.3390/cells13100841

Journal Article Type Article
Acceptance Date May 8, 2024
Online Publication Date May 15, 2024
Deposit Date Jun 10, 2024
Publicly Available Date Jun 10, 2024
Journal Cells
Publisher MDPI
Peer Reviewed Peer Reviewed
Volume 13
Issue 10
Pages 841
DOI https://doi.org/10.3390/cells13100841
Keywords therapy-induced senescence, breast cancer, flow cytometry, senescence escape

Files





Downloadable Citations