Prof Lubo Jankovic L.Jankovic@salford.ac.uk
Professor
The paper looks at replacing the current top-down approach to modelling, predominantly used in dynamic simulation tools, with a nature inspired bottom-up approach based on principles of swarming. Computational fluid dynamics (CFD) is chosen for this research, as one of the most time-consuming processes under the traditional simulation approach. Generally based on Navier-Stokes simultaneous differential equations, CFD requires considerable user preparation time and considerable CPU execution time. The main reason is that the top-down equations represent the system as a whole and generate a large solution space, requiring a solver to find a solution. However, air and building materials do not have cognitive capabilities to solve systems of equations in order to {\textquoteleft}know{\textquoteright} how to transfer heat. Instead, heat transfer occurs through proximity interaction between molecules, leading to self-organised behaviour that is much faster than the behaviour modelled by the top-down systems of equations. The paper investigates how the bottom-up approach using the principles of swarming could improve the speed and interactivity of CFD simulation.
Presentation Conference Type | Conference Paper (published) |
---|---|
Conference Name | 4th IBPSA-England Conference on Building Simulation and Optimization 2018 |
Start Date | Sep 11, 2018 |
End Date | Sep 12, 2018 |
Publication Date | Sep 11, 2018 |
Deposit Date | Oct 11, 2024 |
Pages | 112-118 |
Book Title | Proceedings of the 4th IBPSA-England Conference on Building Simulation and Optimization |
Publisher URL | https://publications.ibpsa.org/conference/?id=bso2018 |
Editorial: Pathways to resilient zero carbon cities
(2022)
Journal Article
Novel biodesign enhancements to at-risk traditional building materials
(2022)
Journal Article
Cumulative Embodied and Operational Emissions of Retrofit in Birmingham Zero Carbon House
(2022)
Journal Article
How can UK housing projects be brought in line with net-zero carbon emission targets?
(2021)
Journal Article
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search