Skip to main content

Research Repository

Advanced Search

All Outputs (9)

Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques (2016)
Journal Article
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2016). Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(7), 1164-1180. https://doi.org/10.1177/0954410015605548

In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achiev... Read More about Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques.

A new non-linear vortex lattice method : applications to wing aerodynamic optimizations (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). A new non-linear vortex lattice method : applications to wing aerodynamic optimizations. Chinese Journal of Aeronautics, 29(5), 1178-1195. https://doi.org/10.1016/j.cja.2016.08.001

This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational... Read More about A new non-linear vortex lattice method : applications to wing aerodynamic optimizations.

Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology. Aeronautical Journal, 120(1231), 1337-1364. https://doi.org/10.1017/aer.2016.61

The paper presents the results of the aerodynamic optimisation of an Unmanned Aerial System's wing using a morphing approach. The shape deformation of the wing is achieved by placing actuator lines at several positions along its span. For each flight... Read More about Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology.

Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach (2016)
Journal Article
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2016). Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(1), 118-131. https://doi.org/10.1177/0954410015587725

In this paper, a morphing wing approach with a new methodology and its results for the high angles-of-attack optimization of the S4 unmanned aerial system airfoil are described. The boundary layer separation delay, coupled with an increase of the max... Read More about Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach.

Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing (2016)
Journal Article
Botez, R., Koreanschi, A., & Sugar-Gabor, O. (2016). Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing. Aeronautical Journal, 120(1227), 757-795. https://doi.org/10.1017/aer.2016.30

An experimental validation of an optimised wing geometry in the Price-Païdoussis subsonic wind tunnel is presented. Two wing models were manufactured using optimised glass fibre composite and tested at three speeds and various angle-of-attack. These... Read More about Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing.

Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., Botez, R., Mamou, M., & Mebarki, Y. (2016). Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance. Aerospace science and technology, 53, 136-153. https://doi.org/10.1016/j.ast.2016.03.014

This paper presents the results obtained from the numerical simulation and experimental wind tunnel testing of a morphing wing equipped with a flexible upper surface and controllable actuated aileron. The technology demonstrator is representative of... Read More about Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance.

Drag optimisation of a wing equipped with a morphing upper surface (2016)
Journal Article
Koreanschi, A., Sugar-Gabor, O., & Botez, R. (2016). Drag optimisation of a wing equipped with a morphing upper surface. Aeronautical Journal, 120(1225), 473-493. https://doi.org/10.1017/aer.2016.6

The drag coefficient and the laminar-to-turbulent transition for the aerofoil component of a wing model are optimised using an adaptive upper surface with two actuation points. The effects of the new shaped aerofoils on the global drag coefficient of... Read More about Drag optimisation of a wing equipped with a morphing upper surface.

Flutter analysis of a morphing wing technology demonstrator : numerical simulation and wind tunnel testing (2016)
Journal Article
Koreanschi, A., Henia, M., Guillemette, O., Michaud, F., Tondji, Y., Sugar-Gabor, O., …Flores salinas, M. (2016). Flutter analysis of a morphing wing technology demonstrator : numerical simulation and wind tunnel testing. Incas Bulletin, 8(1), 99-124. https://doi.org/10.13111/2066-8201.2016.8.1.10

As part of a morphing wing technology project, the flutter analysis of two finite element models and the experimental results of a morphing wing demonstrator equipped with aileron are presented. The finite element models are representing a wing secti... Read More about Flutter analysis of a morphing wing technology demonstrator : numerical simulation and wind tunnel testing.

Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing – CORRIGENDUM (2016)
Journal Article
Botez, R., Koreanschi, A., & Sugar-Gabor, O. (2016). Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing – CORRIGENDUM. Aeronautical Journal, 120(1230), 1335-1335. https://doi.org/10.1017/aer.2016.73

The authors were listed incorrectly in the article by Botez(1). The authors should have appeared in the following order: A. Koreanschi, O. Sugar-Gabor and R.M. Botez The article has now been updated with all authors listed in the correct order;... Read More about Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing – CORRIGENDUM.