Skip to main content

Research Repository

Advanced Search

All Outputs (24)

Single-Point and Multipoint Design of Propellers for Electric-Powered General Aviation (2024)
Journal Article
Sugar-Gabor, O. (in press). Single-Point and Multipoint Design of Propellers for Electric-Powered General Aviation. Journal of Aerospace Engineering, https://doi.org/10.1061/JAEEEZ/ASENG-5718

With electric-powered aircraft concepts slowly maturing, it becomes feasible to include RPM regulation in propeller operation. Variable-pitch and variable-speed propellers will be designed for efficient operation in a wider performance space compared... Read More about Single-Point and Multipoint Design of Propellers for Electric-Powered General Aviation.

A neural network based non-intrusive surrogate modelling framework for fluid-structure interaction (2024)
Journal Article
Fairchild, D., & Şugar-Gabor, O. (in press). A neural network based non-intrusive surrogate modelling framework for fluid-structure interaction. International Journal of Multiphysics, 18(3),

The use of surrogate modelling in Multiphysics simulation is becoming increasingly attractive due to large computation time and hardware demands of modern simulations. These methods aim to reduce the computational time and complexity of the determina... Read More about A neural network based non-intrusive surrogate modelling framework for fluid-structure interaction.

An optimisation of a chordwise slot to enhance lateral flow control on a UCAV (2022)
Journal Article
Ali, U., Chadwick, E., & Sugar-Gabor, O. (2022). An optimisation of a chordwise slot to enhance lateral flow control on a UCAV. Incas Bulletin, 14(4), 3-17. https://doi.org/10.13111/2066-8201.2022.14.4.1

This research aims to optimise a chordwise slot so that lateral flow control of a flying wing
configuration can be enhanced. This was achieved by maximising the airflow rate over the trailing edge
control surfaces of the wing. A higher rate of airf... Read More about An optimisation of a chordwise slot to enhance lateral flow control on a UCAV.

Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks (2021)
Journal Article
Sugar-Gabor, O. (2021). Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks. International Journal of Computer Applications in Technology, 66(1), 36-50. https://doi.org/10.1504/IJCAT.2021.119603

A non-intrusive reduced-order model for nonlinear parametric flow
problems is developed. It is based on extracting a reduced-order basis from
full-order snapshots via proper orthogonal decomposition and using both deep
and shallow neural network a... Read More about Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks.

Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2021). Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies. Aeronautical Journal, 125(1286), 593-617. https://doi.org/10.1017/aer.2020.128

In this paper, recent developments in quasi-3D aerodynamic methods are presented. At their
core, these methods are based on the Lifting-Line Theory and Vortex Lattice Method, but with
a relaxed set of hypotheses, while also considering the effect o... Read More about Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies.

Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics (2020)
Journal Article
Soliman, M., El-Baz, A., Abdel-Aziz, M., Abdel-Aziz, N., & Sugar-Gabor, O. (2020). Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics. International journal of automotive and mechanical engineering (Kuantan), 17(4), 8234-8245. https://doi.org/10.15282/IJAME.17.4.2020.01.0621

The present work investigates the dynamic effect of wheel rotation on the aerodynamic characteristics of slick type (ST) wheel of Formula One racing cars using a computational approach. The ST wheel model was compared to experimental results as a val... Read More about Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics.

Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks (2020)
Journal Article
Sugar-Gabor, O. (2021). Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks. International Journal for Numerical Methods in Fluids, 93(5), 1309-1331. https://doi.org/10.1002/fld.4930

A non-intrusive reduced-order model for nonlinear parametric flow problems is developed. It
is based on extracting a reduced-order basis from high-order snapshots via proper orthogonal
decomposition and using multi-layered feedforward artificial ne... Read More about Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks.

Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2020). Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars. Journal of Aerospace Engineering, 33(5), https://doi.org/10.1061/%28ASCE%29AS.1943-5525.0001166

Aerodynamic shape optimization for the high-subsonic low-Reynolds number flow regime represents an area of on-going research. The interaction between supercritical compressible flow and laminar boundary layer separation is not well understood due to... Read More about Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars.

A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies (2018)
Journal Article
Sugar-Gabor, O. (2018). A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies. Aeronautical Journal, 122(1254), 1199-1228. https://doi.org/10.1017/aer.2018.57

The lifting line theory is widely used for obtaining aerodynamic performance results in various engineering fields, from aircraft conceptual design to wind power generation. Many different models were proposed, each tailored for a specific purpose, t... Read More about A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies.

Numerical and experimental transition results evaluation for a morphing wing and aileron system (2018)
Journal Article
Botez, R., Koreanschi, A., Sugar-Gabor, O., Mebarki, Y., Mamou, M., Tondji, Y., …Concilio, A. (2018). Numerical and experimental transition results evaluation for a morphing wing and aileron system. Aeronautical Journal, 122(1251), 747-784. https://doi.org/10.1017/aer.2018.15

A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind tunnel tested. The development of this wing tip model was performed in the frame of an international... Read More about Numerical and experimental transition results evaluation for a morphing wing and aileron system.

Numerical study of the circular cylinder in supersonic ground effect conditions (2018)
Journal Article
Sugar-Gabor, O. (2018). Numerical study of the circular cylinder in supersonic ground effect conditions. International review of aerospace engineering (CD-ROM), 11(1), https://doi.org/10.15866/irease.v11i1.13696

A numerical study of the aerodynamics of a circular cylinder section in proximity to the ground surface was performed, for Mach numbers of 1.5 and 2.9 and ground clearances between 2 and 0.125, non-dimensional with respect to the cylinder diameter. T... Read More about Numerical study of the circular cylinder in supersonic ground effect conditions.

Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization (2017)
Journal Article
Sugar-Gabor, O. (2017). Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization. Incas Bulletin, 9(3), 133-147. https://doi.org/10.13111/2066-8201.2017.9.3.11

In this paper, a simultaneous analysis and design method is derived and applied for a non-linear constrained aerodynamic optimization problem. The method is based on the approach of defining a Lagrange functional based on the objective function and t... Read More about Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization.

Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms (2017)
Journal Article
Koreanschi, A., Sugar-Gabor, O., Acotto, J., Brianchon, G., Portier, G., Botez, R., …Mebarki, Y. (2017). Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms. Chinese Journal of Aeronautics, 30(1), 149-163. https://doi.org/10.1016/j.cja.2016.12.013

In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the c... Read More about Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms.

Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests (2017)
Journal Article
Koreanschi, A., Sugar-Gabor, O., Acotto, J., Brianchon, G., Portier, G., Botez, R., …Mebarki, Y. (2017). Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests. Chinese Journal of Aeronautics, 30(1), 164-174. https://doi.org/10.1016/j.cja.2016.12.018

In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface... Read More about Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests.

Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques (2016)
Journal Article
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2016). Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(7), 1164-1180. https://doi.org/10.1177/0954410015605548

In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achiev... Read More about Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques.

A new non-linear vortex lattice method : applications to wing aerodynamic optimizations (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). A new non-linear vortex lattice method : applications to wing aerodynamic optimizations. Chinese Journal of Aeronautics, 29(5), 1178-1195. https://doi.org/10.1016/j.cja.2016.08.001

This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational... Read More about A new non-linear vortex lattice method : applications to wing aerodynamic optimizations.

Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology. Aeronautical Journal, 120(1231), 1337-1364. https://doi.org/10.1017/aer.2016.61

The paper presents the results of the aerodynamic optimisation of an Unmanned Aerial System's wing using a morphing approach. The shape deformation of the wing is achieved by placing actuator lines at several positions along its span. For each flight... Read More about Analysis of UAS-S4 Éhecatl aerodynamic performance improvement using several configurations of a morphing wing technology.

Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach (2016)
Journal Article
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2016). Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(1), 118-131. https://doi.org/10.1177/0954410015587725

In this paper, a morphing wing approach with a new methodology and its results for the high angles-of-attack optimization of the S4 unmanned aerial system airfoil are described. The boundary layer separation delay, coupled with an increase of the max... Read More about Improving the UAS-S4 Ehecatl airfoil high angles-of-attack performance characteristics using a morphing wing approach.

Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing (2016)
Journal Article
Botez, R., Koreanschi, A., & Sugar-Gabor, O. (2016). Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing. Aeronautical Journal, 120(1227), 757-795. https://doi.org/10.1017/aer.2016.30

An experimental validation of an optimised wing geometry in the Price-Païdoussis subsonic wind tunnel is presented. Two wing models were manufactured using optimised glass fibre composite and tested at three speeds and various angle-of-attack. These... Read More about Numerical and experimental validation of a morphed wing geometry using Price-Païdoussis wind-tunnel testing.

Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., Botez, R., Mamou, M., & Mebarki, Y. (2016). Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance. Aerospace science and technology, 53, 136-153. https://doi.org/10.1016/j.ast.2016.03.014

This paper presents the results obtained from the numerical simulation and experimental wind tunnel testing of a morphing wing equipped with a flexible upper surface and controllable actuated aileron. The technology demonstrator is representative of... Read More about Numerical simulation and wind tunnel tests investigation and validation of a morphing wing-tip demonstrator aerodynamic performance.