Skip to main content

Research Repository

Advanced Search

Outputs (53)

Supercritical heat transfer characteristics of couple stress convection flow from a vertical cylinder using an equation of state approach (2018)
Journal Article
Basha, H., Reddy, G., Narayanan, N., & Beg, O. (2019). Supercritical heat transfer characteristics of couple stress convection flow from a vertical cylinder using an equation of state approach. Journal of Molecular Liquids, 277(Mar 19), 434-452. https://doi.org/10.1016/j.molliq.2018.11.165

The present work describes numerical simulations of the supercritical heat transfer characteristics of couple stress fluid flow from a vertical cylinder using the equation of state approach. Redlich-Kwong (RK-EOS) and Van der Waals (VW-EOS) equations... Read More about Supercritical heat transfer characteristics of couple stress convection flow from a vertical cylinder using an equation of state approach.

Important paradigms of the thermoelastic waves (2018)
Journal Article
Khan, A., Sohail, A., Beg, O., & Tariq, R. (2018). Important paradigms of the thermoelastic waves. Arabian Journal for Science and Engineering, 44(1), 663-671. https://doi.org/10.1007/s13369-018-3649-5

This paper is devoted to the investigation of the propagation of magneto-thermo-elastic waves in a rotating monoclinic system. The system is electrically conducting in the presence of an applied magnetic field. A general dispersion relation is obtaine... Read More about Important paradigms of the thermoelastic waves.

Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer (2018)
Journal Article
Manzoor, N., Maqbool, K., Beg, O., & Shaheen, S. (2018). Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer. Heat Transfer - Asian Research, 48(2), 556-581. https://doi.org/10.1002/htj.21394

Physiological transport phenomena often feature ciliated internal walls. Heat, momentum and multi-species mass transfer may arise and additionally non-Newtonian biofluid characteristics are common in smaller vessels. Blood (containing hemoglobin) or... Read More about Adomian decomposition solution for propulsion of dissipative magnetic Jeffrey biofluid in a ciliated channel containing a porous medium with forced convection heat transfer.

Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction (2018)
Journal Article
Uddin, M., Kabir, M., Beg, O., & Alginahi, Y. (2018). Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 232(4), 109-122. https://doi.org/10.1177/2397791418809795

In this paper the steady two dimensional stagnation point flow of a viscous incompressible electrically conducting bio-nanofluid over a stretching/shrinking wedge in the presence of passively control boundary condition, Stefan blowing and multiple sl... Read More about Chebyshev collocation computation of magneto-bioconvection nanofluid flow over a wedge with multiple slips and magnetic induction.

Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet (2018)
Journal Article
Kumar, M., Reddy, G., Kumar, N., & Beg, O. (2018). Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet. Heat Transfer - Asian Research, 48(2), 582-600. https://doi.org/10.1002/htj.21396

In the present article, the transient rheological boundary layer flow over a stretching sheet with heat transfer is investigated, a topic of relevance to non-Newtonian thermal materials processing. Stokes couple stress model is deployed to simulate... Read More about Application of differential transform method to unsteady free convective heat transfer of a couple stress fluid over a stretching sheet.

Numerical study of viscoelastic micropolar heat transfer from a vertical cone for thermal polymer coating (2018)
Journal Article
Madhavi, K., Prasad, V., Rao, A., Beg, O., & Kadir, A. (2018). Numerical study of viscoelastic micropolar heat transfer from a vertical cone for thermal polymer coating. Nonlinear Engineering, 8(1), 449-460. https://doi.org/10.1515/nleng-2018-0064

A mathematical model is developed to study laminar, nonlinear, non-isothermal, steady-state free convection boundary layer flow and heat transfer of a micropolar viscoelastic fluid from a vertical isothermal cone. The Eringen model and Jeffery’s visc... Read More about Numerical study of viscoelastic micropolar heat transfer from a vertical cone for thermal polymer coating.

Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics : mathematical modelling (2018)
Journal Article
transport in uterine hydrodynamics : mathematical modelling. Journal of Biomechanical Engineering, 141(2), 021003. https://doi.org/10.1115/1.4041904

Embryological transport features a very interesting and complex application of peristaltic fluid dynamics. Electro-osmotic phenomena are also known to arise in embryo transfer location. The fluid dynamic environment in embryological systems is also k... Read More about Electro-osmosis modulated viscoelastic embryo transport in uterine hydrodynamics : mathematical modelling.

Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model (2018)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., & Kadir, A. (2018). Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model. Heat Transfer - Asian Research, 48(1), 435-459. https://doi.org/10.1002/htj.21392

Nonlinear, steady-state, viscous flow and heat transfer between two stretchable rotating disks spinning at dissimilar velocities is studied with a non-Fourier heat flux model. A non-deformable porous medium is intercalated between the disks and the D... Read More about Numerical study of heat transfer and viscous flow in a dual rotating extendable disk system with a non-Fourier heat flux model.

Investigation of influence of homogenization models on stability and dynamics of FGM plates on elastic foundations (2018)
Journal Article
Mehala, T., Belabed, Z., Tounsi, A., & Beg, O. (2018). Investigation of influence of homogenization models on stability and dynamics of FGM plates on elastic foundations. Geomechanics and engineering, 16(3), 257-271. https://doi.org/10.12989/gae.2018.16.3.257

In this paper, the effect of the homogenization models on buckling and free vibration is presented for functionally graded plates (FGM) resting on elastic foundations. The majority of investigations developed in the last decade, explored the Voigt ho... Read More about Investigation of influence of homogenization models on stability and dynamics of FGM plates on elastic foundations.

Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity : solar collector nanomaterial coating manufacturing simulation (2018)
Journal Article
Mehmood, R., Tabassum, R., Kuharat, S., Beg, O., & Babaie, M. (2018). Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity : solar collector nanomaterial coating manufacturing simulation. Arabian Journal for Science and Engineering, 44(2), 1525-1541. https://doi.org/10.1007/s13369-018-3599-y

Nano-polymeric solar paints and sol-gels have emerged as a major new development in solar cell/collector coatings offering significant improvements in durability, anti-corrosion and thermal efficiency. They also exhibit substantial viscosity variatio... Read More about Thermal slip in oblique radiative nano-polymer gel transport with temperature-dependent viscosity : solar collector nanomaterial coating manufacturing simulation.

Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd B oblique stagnation flow with a non-Fourier heat flux model (2018)
Journal Article
Mehmood, R., Rana, S., Beg, O., & Kadir, A. (2018). Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd B oblique stagnation flow with a non-Fourier heat flux model. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(526), https://doi.org/10.1007/s40430-018-1446-4

Reactive magnetohydrodynamic (MHD) flows arise in many areas of nuclear reactor transport. Working fluids in such systems may be either Newtonian or non-Newtonian. Motivated by these applications, in the current study, a mathematical model is develop... Read More about Numerical study of chemical reaction effects in magnetohydrodynamic Oldroyd B oblique stagnation flow with a non-Fourier heat flux model.

Cancer drug therapy and stochastic modelling of “nano-motors” (2018)
Journal Article
Sherin, L., Farwa, S., Sohail, A., Beg, O., & Li, Z. (2018). Cancer drug therapy and stochastic modelling of “nano-motors”. International Journal of Nanomedicine, 2018(13), 6429-6440. https://doi.org/10.2147/IJN.S168780

Controlled inhibition of kinesin motor proteins is highly desired in the field of oncology. Among other interventions, the selective Eg5 competitive and allosteric inhibitors is the most successful targeted chemotherapeutic regime/options, inducing... Read More about Cancer drug therapy and stochastic modelling of “nano-motors”.

Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation (2018)
Journal Article
Vasu, B., Gorla, R., Beg, O., Murthy, P., Prasad, V., & Kadir, A. (2019). Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation. Journal of Thermophysics and Heat Transfer, 33(2), 343-355. https://doi.org/10.2514/1.T5516

A theoretical study is presented of transient mixed convection boundary layer flow of a nanofluid in the forward stagnation region of a heated sphere which is rotating with time dependent angular velocity. The effect of the non-linear Boussinesq appr... Read More about Unsteady flow of a nanofluid over a sphere with nonlinear Boussinesq approximation.

Second law analysis of flow in a circular pipe with uniform suction and magnetic field effects (2018)
Journal Article
Nagaraju, G., Jangili, S., RamanaMurthy, J., Beg, O., & Kadir, A. (2018). Second law analysis of flow in a circular pipe with uniform suction and magnetic field effects. Journal of Heat Transfer, 141(1), 012004. https://doi.org/10.1115/1.4041796

The present paper investigates analytically the two-dimensional heat transfer and entropy generation characteristics of axi-symmetric, incompressible viscous fluid flow in a horizontal circular pipe.The flow is subjected to an externally applied unif... Read More about Second law analysis of flow in a circular pipe with uniform suction and magnetic field effects.

Computational modelling and solutions for mixed convection boundary layer flows of nanofluid from a non-isothermal wedge (2018)
Journal Article
Gaffar, S., Prasad, V., Rushi Kumar, B., & Beg, O. (2018). Computational modelling and solutions for mixed convection boundary layer flows of nanofluid from a non-isothermal wedge. Journal of Nanofluids, 7(5), 1024-1032. https://doi.org/10.1166/jon.2018.1522

Buoyancy-driven (“Falkner-Skan”) mixed convection flow of a nanofluid from a nonisothermal wedge has been investigated numerically using an implicit finite difference scheme. The model used for nanofluid includes the effects of Brownian motion, buoya... Read More about Computational modelling and solutions for mixed convection boundary layer flows of nanofluid from a non-isothermal wedge.

Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media (2018)
Journal Article
Norouzi, M., Dorrani, S., Shokri, H., & Beg, O. (2018). Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media. International Journal of Heat and Mass Transfer, 129, 212-223. https://doi.org/10.1016/j.ijheatmasstransfer.2018.09.048

The thermo-viscous fingering instability associated with miscible displacement through a porous medium is studied numerically, motivated by applications in upstream oil industries especially enhanced oil recovery (EOR) via wells using hot water flood... Read More about Effects of viscous dissipation on miscible thermo-viscous fingering instability in porous media.

Nonlinear multiphysical laminar nanofluid bioconvection flows : models and computation (2018)
Book Chapter
Beg, O. (2018). Nonlinear multiphysical laminar nanofluid bioconvection flows : models and computation. In A. Sohail, & Z. Li (Eds.), Computational Approaches in Biomedical Nano-Engineering (113-145). Germany: Wiley. https://doi.org/10.1002/9783527344758.ch5

Bioconvection has been familiar to biological science for over a century. This phenomenon occurs due to average upwardly swimming micro-organisms which are a little denser than water in suspensions. The upper surface of the suspensions is destabilize... Read More about Nonlinear multiphysical laminar nanofluid bioconvection flows : models and computation.

Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects : modelling a solar magneto-biomimetic nanopump (2018)
Journal Article
Prakash, J., Siva, E., Tripathi, D., Kuharat, S., & Beg, O. (2019). Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects : modelling a solar magneto-biomimetic nanopump. Renewable Energy, 133, 1308-1326. https://doi.org/10.1016/j.renene.2018.08.096

Nanofluids have shown significant promise in the thermal enhancement of many industrial systems. They have been developed extensively in energy applications in recent years. Solar energy systems are one of the most promising renewables available to h... Read More about Peristaltic pumping of magnetic nanofluids with thermal radiation and temperature-dependent viscosity effects : modelling a solar magneto-biomimetic nanopump.

Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery (2018)
Journal Article
Ali, N., Zaman, A., Sajid, M., Beg, O., Shamshuddin, M., & Kadir, A. (2018). Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery. Nanoscience and Technology: An International Journal, 9(3), 247-282. https://doi.org/10.1615/NanoSciTechnolIntJ.2018027297

Nanofluids are becoming increasingly popular in novel hematological treatments and also advanced nanoscale biomedical devices. Motivated by recent developments in this area, a theoretical and numerical study is described for unsteady pulsatile flow,... Read More about Numerical simulation of time-dependent non-Newtonian nano-pharmacodynamic transport phenomena in a tapered overlapping stenosed artery.

Modeling and simulation of nanofluid transport via elastic sheets (2018)
Journal Article
Uddin, M., Sohail, A., Beg, O., & Ismail, A. (2018). Modeling and simulation of nanofluid transport via elastic sheets. Biomedical engineering, 30(5), #185033. https://doi.org/10.4015/S1016237218500333

The field of nanofluidics research has spanned over the past decade with a variety of promising applications. We investigate the ``laminar boundary layer flow’’ of a Newtonian nanofluid past a moving extendable/contractable horizontal plate with surf... Read More about Modeling and simulation of nanofluid transport via elastic sheets.

Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone (2018)
Journal Article
Gaffar, S., Prasad, V., Beg, O., Khan, M., & Venkatadri, K. (2018). Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(9), #441. https://doi.org/10.1007/s40430-018-1354-7

In thermo-fluid dynamics, free convection flows external to different geometries such as cylinders, ellipses, spheres, curved walls, wavy plates, cones etc. play major role in various industrial and process engineering systems. The thermal buoyancy f... Read More about Effects of ramped wall temperature and concentration on viscoelastic Jeffrey’s fluid flows from a vertical permeable cone.

Ansys simulation of natural convection and radiation in a solar enclosure (2018)
Presentation / Conference
Kuharat, S., & Beg, O. (2018, August). Ansys simulation of natural convection and radiation in a solar enclosure. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

The interest in sustainable and renewable energy systems has witnessed significant expansion in the 21st century. Space solar power (SSP) collectors have multiple advantages over earth-based solar power plants. They receive more sun light, are unaffe... Read More about Ansys simulation of natural convection and radiation in a solar enclosure.

Oblique radiative solar nano-polymer gel coating heat transfer and slip flow: manufacturing simulation (2018)
Presentation / Conference
Beg, O., Kuharat, S., Mehmood, R., Tabassum, R., & Babaie, M. (2018, August). Oblique radiative solar nano-polymer gel coating heat transfer and slip flow: manufacturing simulation. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

In the current work we study numerically the time-independent twodimensional, non-aligned (oblique) slip flow of copper metal-doped water-based nano-polymeric sol gels under radiative heat flux. Reynolds temperature-dependent viscosity model is emplo... Read More about Oblique radiative solar nano-polymer gel coating heat transfer and slip flow: manufacturing simulation.

Thermal stress and CFD analysis of coatings for high-temperature corrosion (2018)
Presentation / Conference
Kadir, A., & Beg, O. (2018, August). Thermal stress and CFD analysis of coatings for high-temperature corrosion. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

Modern gas turbine blades experience significant thermal loading during expected life cycles. Temperatures can attain in excess of 1000 Celsius. It is therefore necessary to coat the blades with thermal barrier coatings (TBCs) which also provide prot... Read More about Thermal stress and CFD analysis of coatings for high-temperature corrosion.

Simulation of a nanofluid-based annular solar collector (2018)
Presentation / Conference
Kuharat, S., & Beg, O. (2018, August). Simulation of a nanofluid-based annular solar collector. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressible laminar flow comprising... Read More about Simulation of a nanofluid-based annular solar collector.

Numerical simulation of von Karman swirling bioconvection nanofluid flow from a deformable rotating disk (2018)
Presentation / Conference
Kadir, A., Mishra, S., Shamshuddin, M., & Beg, O. (2018, August). Numerical simulation of von Karman swirling bioconvection nanofluid flow from a deformable rotating disk. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

Rotating disk bio-reactors are fundamental to numerous medical and chemical engineering processes including oxygen transfer, chromatography, purification and swirl-assisted pumping. The modern upsurge in biologically-enhanced engineering devices has... Read More about Numerical simulation of von Karman swirling bioconvection nanofluid flow from a deformable rotating disk.

CFD simulation of turbulent convective heat transfer in rectangular mini-channels for rocket cooling applications (2018)
Presentation / Conference
Beg, O., Zubair, A., Kuharat, S., & Babaie, M. (2018, August). CFD simulation of turbulent convective heat transfer in rectangular mini-channels for rocket cooling applications. Poster presented at ICHTFM 2018 : 20th International Conference on Heat Transfer and Fluid Mechanics, Istanbul, Turkey

Heat transfer is one of the most critical aspects of the rocket propulsion design process. According to released heat, thermal loads are extremely large, and thermal insulation is frequently necessary in the motor combustion chambers and nozzles. In... Read More about CFD simulation of turbulent convective heat transfer in rectangular mini-channels for rocket cooling applications.

Finite element analysis of rotating oscillatory magneto-convective radiative micropolar thermo-solutal flow (2018)
Journal Article
Shamshuddin, M., Beg, O., & Kadir, A. (2018). Finite element analysis of rotating oscillatory magneto-convective radiative micropolar thermo-solutal flow. International Journal of Fluid Mechanics Research, 45(6), 479-508. https://doi.org/10.1615/InterJFluidMechRes.2018024955

Micropolar fluids provide an alternative mechanism for simulating micro-scale and molecular fluid mechanics which require less computational effort. In the present paper, a numerical analysis is conducted for the primary and secondary flow characteri... Read More about Finite element analysis of rotating oscillatory magneto-convective radiative micropolar thermo-solutal flow.

Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing (2018)
Journal Article
Norouzi, M., Davoodi, M., Beg, O., & Shamshuddin, M. (2018). Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing. International Journal of Applied and Computational Mathematics, 4(108), https://doi.org/10.1007/s40819-018-0541-7

The characteristics of the flow field of both viscous and viscoelastic fluids passing through a curved pipe with a Navier slip boundary condition have been investigated analytically in the present study. The Oldroyd-B constitutive equation is employe... Read More about Theoretical study of Oldroyd-b visco-elastic fluid flow through curved pipes with slip effects in polymer flow processing.

Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump (2018)
Journal Article
Ramesh, K., Tripathi, D., Beg, O., & Kadir, A. (2019). Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump. Iranian Journal of Science and Technology Transactions of Mechanical Engineering, 43, 675-692. https://doi.org/10.1007/s40997-018-0230-5

The magnetic properties of blood allow it to be manipulated with an electromagnetic field. Electromagnetic blood flow pumps are a robust technology which provide more elegant and sustainable performance compared with conventional medical pumps. Blood... Read More about Slip and hall current effects on Jeffrey fluid suspension flow in a peristaltic hydromagnetic blood micropump.

Lie symmetry analysis and numerical solutions for thermo-solutal chemicallyreacting radiative micropolar flow from an inclined porous surface (2018)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., & Kadir, A. (2018). Lie symmetry analysis and numerical solutions for thermo-solutal chemicallyreacting radiative micropolar flow from an inclined porous surface. Heat Transfer - Asian Research, 47(7), 918-940. https://doi.org/10.1002/htj.21358

Steady, laminar, incompressible thermo-solutal natural convection flow of micropolar fluid from an inclined perforated surface with convective boundary conditions is studied. Thermal radiative flux and chemical reaction effects are included to re... Read More about Lie symmetry analysis and numerical solutions for thermo-solutal chemicallyreacting radiative micropolar flow from an inclined porous surface.

Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate (2018)
Journal Article
Janardhana Reddy, G., Kumar, M., & Beg, O. (2018). Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate. Physica A: Statistical Mechanics and its Applications, 510, 426-445. https://doi.org/10.1016/j.physa.2018.06.065

A numerical investigation of the viscosity variation effect upon entropy generation in time-dependent viscoelastic polymeric fluid flow and natural convection from a semi-infinite vertical plate is described. The Reiner-Rivlin second order differenti... Read More about Effect of temperature-dependent viscosity on entropy generation in transient viscoelastic polymeric fluid flow from an isothermal vertical plate.

Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation (2018)
Journal Article
Rana, P., Shukla, N., Beg, O., Kadir, A., & Singh, B. (2018). Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 232(2-3), 69-82. https://doi.org/10.1177/2397791418782030

The present article investigates the combined influence of nonlinear radiation, Stefan blowing and chemical reactions on unsteady EMHD stagnation point flow of a nanofluid from a horizontal stretching sheet. Both electrical and magnetic body forces a... Read More about Unsteady electromagnetic radiative nanofluid stagnation-point flow from a stretching sheet with chemically reactive nanoparticles, Stefan blowing effect and entropy generation.

Role of key players in paradigm shifts of prostate cancer bone metastasis (2018)
Journal Article
Sohail, A., Sherin, L., Butt, S., Javed, S., Li, Z., Iqbal, S., & Beg, O. (2018). Role of key players in paradigm shifts of prostate cancer bone metastasis. Cancer Management and Research, 2018(10), 1619-1626. https://doi.org/10.2147/CMAR.S162525

Prostate cancer is one of the most common human cancers and bone metastasis is a frequent finding in the natural history of several types of cancers. The molecular mechanisms that makes prostate cancer metastasize to bone have recently been identified,... Read More about Role of key players in paradigm shifts of prostate cancer bone metastasis.

Electroosmotic flow of biorheological micropolar fluids through microfluidic channels (2018)
Journal Article
Chaube, M., Yadav, A., Tripathi, D., & Beg, O. (2018). Electroosmotic flow of biorheological micropolar fluids through microfluidic channels. Korea-Australia rheology journal, 30(2), 89-98. https://doi.org/10.1007/s13367-018-0010-1

An analysis is presented in this work to assess the influence of micropolar nature of fluids in fully developed flow induced by electrokinetically driven peristaltic pumping through a parallel plate microchannel. The walls of the channel are assumed... Read More about Electroosmotic flow of biorheological micropolar fluids through microfluidic channels.

Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium (2018)
Journal Article
Akbar, N., Shoaib, M., Tripathi, D., Bhushan, S., & Beg, O. (2018). Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium. Journal of Hydrodynamics, 30(2), 296-306. https://doi.org/10.1007/s42241-018-0021-x

The transportation of biological and industrial nanofluids by natural propulsion like cilia movement and self-generated contraction-relaxation of flexible walls has significant applications in numerous emerging technologies. Inspired by multi-discipl... Read More about Analytical approach for entropy generation and heat transfer in CNT-nanofluid dynamics through a ciliated porous medium.

Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel (2018)
Journal Article
Narla, V., Tripathi, D., Beg, O., & Kadir, A. (2018). Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel. Journal of Engineering Mathematics, 111(1), 127-143. https://doi.org/10.1007/s10665-018-9958-6

A mathematical model is presented to analyze the unsteady peristaltic flow of magnetized viscoelastic fluids through a deformable curved channel. The study simulates the bio-inspired pumping of electro-conductive rheological polymers which possess both... Read More about Modeling transient magnetohydrodynamic peristaltic pumping of electroconductive viscoelastic fluids through a deformable curved channel.

Free convection heat and mass transfer of a nanofluid past a horizontal cylinder embedded in a non-Darcy porous medium (2018)
Journal Article
Rao, A., Prasad, V., Beg, O., & Rashidi, M. (2018). Free convection heat and mass transfer of a nanofluid past a horizontal cylinder embedded in a non-Darcy porous medium. Journal of Porous Media, 21(3), 1-16. https://doi.org/10.1615/JPorMedia.v21.i3.60

In the present paper, we analyzed the laminar boundary layer flow and heat transfer from a horizontal cylinder in a nanofluid-saturated non-Darcy porous medium in the presence of thermal radiation. This is the first paper presenting non-similar solution... Read More about Free convection heat and mass transfer of a nanofluid past a horizontal cylinder embedded in a non-Darcy porous medium.

Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: a model for magnetic polymer processing (2018)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., & Kadir, A. (2018). Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: a model for magnetic polymer processing. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 233(4), 1246-1261. https://doi.org/10.1177/0954406218768837

Magnetic polymer materials processing involves many multi-physical and chemical effects. Motivated by such applications, in the present work a theoretical analysis is conducted of combined heat and mass transfer in unsteady mixed convection flow of m... Read More about Unsteady reactive magnetic radiative micropolar flow, heat and mass transfer from an inclined plate with joule heating: a model for magnetic polymer processing.

Three-layered electro-osmosis modulated blood flow through a micro-channel (2018)
Journal Article
Tripathi, D., Jhorar, R., Borode, A., & Beg, O. (2018). Three-layered electro-osmosis modulated blood flow through a micro-channel. European Journal of Mechanics - B/Fluids, 72, 391-402. https://doi.org/10.1016/j.euromechflu.2018.03.016

Electrokinetic peristaltic multi-layered transport is considered in a micro-channel under the action of an axial electrical field. Three different layers i.e. the core layer, intermediate layer and peripheral layer are simulated with three different... Read More about Three-layered electro-osmosis modulated blood flow through a micro-channel.

Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia (2018)
Journal Article
Akbar, N., Tripathi, D., Khan, Z., & Beg, O. (2018). Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia. Mathematical Biosciences, 301, 121-128. https://doi.org/10.1016/j.mbs.2018.04.001

In this paper, we present an analytical study of pressure-driven flow of micropolar non-Newtonian physiological fluids through a channel comprising two parallel oscillating walls. The cilia are arranged at equal intervals and protrude normally from b... Read More about Mathematical modelling of pressure-driven micropolar biological flow due to metachronal wave propulsion of beating cilia.

Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles (2018)
Journal Article
Beg, O., Sanchez Espinoza, D., Kadir, A., Shamshuddin, M., & Sohail, A. (2018). Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles. Applied Nanoscience, 8(5), 1069-1090. https://doi.org/10.1007/s13204-018-0746-4

An experimental study of the rheology and lubricity properties of a drilling fluid is reported, motivated by applications in highly deviated and extended reach wells. Recent developments in nanofluids have identified that the judicious injection of n... Read More about Experimental study of improved rheology and lubricity of drilling fluids enhanced with nano-particles.

Rotating unsteady multi-physico-chemical magneto-micropolar transport in porous media : Galerkin finite element study (2018)
Journal Article
Beg, O., Shamshuddin, M., Reddy, S., & Kadir, A. (2018). Rotating unsteady multi-physico-chemical magneto-micropolar transport in porous media : Galerkin finite element study. Computational Thermal Sciences, 10(2), 167-197. https://doi.org/10.1615/ComputThermalScien.2017019576

In this paper, a mathematical model is developed for magnetohydrodynamic (MHD), incompressible, dissipative and chemically reacting micropolar fluid flow, heat and mass transfer through a porous medium from a vertical plate with Hall current, Soret a... Read More about Rotating unsteady multi-physico-chemical magneto-micropolar transport in porous media : Galerkin finite element study.

Heat transfer in viscoplastic boundary layer flow from a vertical permeable cone with momentum and thermal wall slip : numerical study (2018)
Journal Article
Rao, A., Prasad, V., Radhika, V., & Beg, O. (2018). Heat transfer in viscoplastic boundary layer flow from a vertical permeable cone with momentum and thermal wall slip : numerical study. Heat Transfer Research, 49(3), 189-204. https://doi.org/10.1615/HeatTransRes.2017018153

A mathematical model is presented for the laminar free convection boundary layer flow of Casson viscoplastic non-Newtonian fluid external to a vertical penetrable circular cone in the presence of thermal and hydrodynamic slip conditions. The cone sur... Read More about Heat transfer in viscoplastic boundary layer flow from a vertical permeable cone with momentum and thermal wall slip : numerical study.

Flow visualization using heat lines for unsteady radiative hydromagnetic Micropolar convection from a vertical slender hollow cylinder (2018)
Journal Article
Janardhana Reddy, G., Kethireddy, B., & Beg, O. (2018). Flow visualization using heat lines for unsteady radiative hydromagnetic Micropolar convection from a vertical slender hollow cylinder. International Journal of Mechanical Sciences, 140, 493-505. https://doi.org/10.1016/j.ijmecsci.2018.03.014

The present study aims to investigate the thermal radiation heat transfer effect on unsteady magnetohydrodynamic (MHD) flow of micropolar fluid over a uniformly heated vertical hollow cylinder using Bejan’s heat function concept. The normalized conse... Read More about Flow visualization using heat lines for unsteady radiative hydromagnetic Micropolar convection from a vertical slender hollow cylinder.

Physics of fractional imaging in biomedicine (2018)
Journal Article
Sohail, A., Beg, O., Li, Z., & Maqbool, K. (2018). Physics of fractional imaging in biomedicine. Progress in Biophysics and Molecular Biology, 140(Dec 18), 13-20. https://doi.org/10.1016/j.pbiomolbio.2018.03.002

Medical imaging is a rapidly evolving sub-field of biomedical engineering as it considers novel approaches to visualizing biological tissues with the general goal of improving health. Medical imaging research provides improved diagnostic tools in clin... Read More about Physics of fractional imaging in biomedicine.

Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition (2018)
Journal Article
Ali, N., Asghar, Z., Beg, O., & Javed, T. (2018). Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition. Results in Physics, 9, 682-691. https://doi.org/10.1016/j.rinp.2018.02.070

The gliding organisms are phylogenetically diverse with their hundreds of types, different shapes and several mechanism of motility. Gliding bacteria are rod-shaped bacteria without any flagella on their surface. They exhibit a creeping type of self-... Read More about Rheological effects of micropolar slime on the gliding motility of bacteria with slip boundary condition.

Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method (2018)
Journal Article
Hidayathulla Khan, B., Venkatadri, K., Beg, O., Ramachandra Prasad, V., & Mallikarjuna, B. (2018). Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method. International Journal of Applied and Computational Mathematics, 4(61), https://doi.org/10.1007/s40819-018-0492-z

In this study, a numerical investigation has been performed using the computational Harlow-Welch MAC (Marker and Cell) finite difference method to analyse the unsteady state two-dimensional natural convection in lid-driven square cavity with left wal... Read More about Natural convection in a square cavity with uniformly heated and/or insulated walls using marker-and-cell method.

Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption (2018)
Journal Article
Gaffar, S., Prasad, V., Beg, O., Khan, M., & Venkatadri, V. (2018). Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 40(127), https://doi.org/10.1007/s40430-018-1049-0

A mathematical analysis is presented to investigate the nonlinear, isothermal, steady-state, free convection boundary layer flow of an incompressible third grade viscoelastic fluid past an isothermal inverted cone in the presence of magnetohydrodynam... Read More about Radiative and magnetohydrodynamics flow of third grade viscoelastic fluid past an isothermal inverted cone in the presence of heat generation/absorption.

Numerical study of hydromagnetic non-Newtonian nanofluid transport phenomena from a horizontal cylinder with thermal slip : aerospace nanomaterial enrobing simulation (2018)
Journal Article
Nagendra, N., Subba Rao, A., Amanulla, C., Reddy, M., Beg, O., & Kadir, A. (2018). Numerical study of hydromagnetic non-Newtonian nanofluid transport phenomena from a horizontal cylinder with thermal slip : aerospace nanomaterial enrobing simulation. Journal of Nanofluids, 7(1), 115-128. https://doi.org/10.1166/jon.2018.1423

In this article, the combined magnetohydrodynamic heat, momentum and mass (species) transfer in external boundary layer flow of Casson nanofluid from a horizontal circular cylinder surface with convective condition under an applied magnetic field is... Read More about Numerical study of hydromagnetic non-Newtonian nanofluid transport phenomena from a horizontal cylinder with thermal slip : aerospace nanomaterial enrobing simulation.

Multi-physical electro-magnetic propulsion fluid dynamics : mathematical modelling and computation (2018)
Book Chapter
Beg, O. (2018). Multi-physical electro-magnetic propulsion fluid dynamics : mathematical modelling and computation. In S. Sparks, & B. Willis (Eds.), Mathematical Modeling : Methods, Applications and Research (2-88). New York, USA: Nova Science Publishers, New York, USA

The long-standing interest in manned inter-planetary missions has motivated a re-think worldwide in developing better propulsion drives. Many hypothetical systems which did offer some promise in the 1970s and 1980s have been abandoned. A significant... Read More about Multi-physical electro-magnetic propulsion fluid dynamics : mathematical modelling and computation.

B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow (2018)
Journal Article
Beg, O., Sohail, A., Kadir, A., Beg, T., & Ravindran, S. (2018). B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow. Journal of Mechanics in Medicine and Biology, 18(1), https://doi.org/10.1142/S0219519418500070

A mathematical model is presented for magnetized nanofluid bio-tribological squeeze film flow between two approaching disks. The nanofluid comprises a suspension of metal oxide nanoparticles with an electrically-conducting base fluid, making the nano... Read More about B-spline collocation simulation of non-linear transient magnetic nanobio-tribological squeeze-film flow.

Study of microvascular blood flow modulated by electroosmosis (2018)
Journal Article
Tripathi, D., Yadav, A., Beg, O., & Kumar, R. (2018). Study of microvascular blood flow modulated by electroosmosis. Microvascular Research, 117, 28-36. https://doi.org/10.1016/j.mvr.2018.01.001

An analytical study of microvascular non-Newtonian blood flow is conducted incorporating the electro-osmosis phenomenon. Blood is considered as a Bingham rheological aqueous ionic solution. An externally applied static axial electrical field is impos... Read More about Study of microvascular blood flow modulated by electroosmosis.