Skip to main content

Research Repository

Advanced Search

Outputs (29)

Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2021). Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies. Aeronautical Journal, 125(1286), 593-617. https://doi.org/10.1017/aer.2020.128

In this paper, recent developments in quasi-3D aerodynamic methods are presented. At their core, these methods are based on the Lifting-Line Theory and Vortex Lattice Method, but with a relaxed set of hypotheses, while also considering the effect o... Read More about Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies.

Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2020). Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars. Journal of Aerospace Engineering, 33(5), https://doi.org/10.1061/%28ASCE%29AS.1943-5525.0001166

Aerodynamic shape optimization for the high-subsonic low-Reynolds number flow regime represents an area of on-going research. The interaction between supercritical compressible flow and laminar boundary layer separation is not well understood due to... Read More about Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars.

Numerical and experimental transition results evaluation for a morphing wing and aileron system (2018)
Journal Article
Botez, R., Koreanschi, A., Sugar-Gabor, O., Mebarki, Y., Mamou, M., Tondji, Y., …Concilio, A. (2018). Numerical and experimental transition results evaluation for a morphing wing and aileron system. Aeronautical Journal, 122(1251), 747-784. https://doi.org/10.1017/aer.2018.15

A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind tunnel tested. The development of this wing tip model was performed in the frame of an international... Read More about Numerical and experimental transition results evaluation for a morphing wing and aileron system.

Morphing wing application on Hydra Technologies UAS-S4 (2017)
Presentation / Conference
Segui, M., Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2017, February). Morphing wing application on Hydra Technologies UAS-S4. Presented at IASTED Modelling, Identification and Control 2017 Conference, Innsbruck, Austria

This paper presents the aerodynamic results of a morphing wing study performed on the UAS S4 Éhecatl from Hydra Technologies. Only the cruise phase of the aircraft was considered (constant altitude and constant speed). The difference, from an aerodyn... Read More about Morphing wing application on Hydra Technologies UAS-S4.

Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms (2017)
Journal Article
Koreanschi, A., Sugar-Gabor, O., Acotto, J., Brianchon, G., Portier, G., Botez, R., …Mebarki, Y. (2017). Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms. Chinese Journal of Aeronautics, 30(1), 149-163. https://doi.org/10.1016/j.cja.2016.12.013

In this paper, an ‘in-house’ genetic algorithm is described and applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface morphing. The algorithm’s performances were studied from the c... Read More about Optimization and design of an aircraft’s morphing wing-tip demonstrator for drag reduction at low speed, Part I – Aerodynamic optimization using genetic, bee colony and gradient descent algorithms.

Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests (2017)
Journal Article
Koreanschi, A., Sugar-Gabor, O., Acotto, J., Brianchon, G., Portier, G., Botez, R., …Mebarki, Y. (2017). Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests. Chinese Journal of Aeronautics, 30(1), 164-174. https://doi.org/10.1016/j.cja.2016.12.018

In the present paper, an ‘in-house’ genetic algorithm was numerically and experimentally validated. The genetic algorithm was applied to an optimization problem for improving the aerodynamic performances of an aircraft wing tip through upper surface... Read More about Optimization and design of an aircraft's morphing wing-tip demonstrator for drag reduction at low speeds, Part II - Experimental validation using Infra-Red transition measurement from Wind Tunnel tests.

Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques (2016)
Journal Article
Sugar-Gabor, O., Simon, A., Koreanschi, A., & Botez, R. (2016). Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 230(7), 1164-1180. https://doi.org/10.1177/0954410015605548

In this paper, we present a morphing wing concept of the airfoil of the S4 unmanned aerial system, the new optimization methodology and the results obtained for multiple flight conditions. The reduction of the airfoil drag coefficient has been achiev... Read More about Aerodynamic performance improvement of the UAS-S4 Ehecatl morphing airfoil using novel optimization techniques.

A new non-linear vortex lattice method : applications to wing aerodynamic optimizations (2016)
Journal Article
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). A new non-linear vortex lattice method : applications to wing aerodynamic optimizations. Chinese Journal of Aeronautics, 29(5), 1178-1195. https://doi.org/10.1016/j.cja.2016.08.001

This paper presents a new non-linear formulation of the classical Vortex Lattice Method (VLM) approach for calculating the aerodynamic properties of lifting surfaces. The method accounts for the effects of viscosity, and due to its low computational... Read More about A new non-linear vortex lattice method : applications to wing aerodynamic optimizations.

Aerodynamic analysis of upper surface wing morphing efficiency for the S4 Éhecatl unmanned aerial system (2016)
Book Chapter
Sugar-Gabor, O., Koreanschi, A., & Botez, R. (2016). Aerodynamic analysis of upper surface wing morphing efficiency for the S4 Éhecatl unmanned aerial system. In Unmanned Aircraft Systems (ICUAS), 2016 International Conference on 7-10 June 2016 (185-194). IEEE. https://doi.org/10.1109/ICUAS.2016.7502530

This paper investigates the aerodynamic performance improvement of the Hydra Technologies S4 Unmanned Aerial System using a morphing wing concept. A part of the wing's upper surface is morphed, as function of the flight condition, in order to increas... Read More about Aerodynamic analysis of upper surface wing morphing efficiency for the S4 Éhecatl unmanned aerial system.