Skip to main content

Research Repository

Advanced Search

Outputs (32)

Bistable Helmholtz dark spatial optical solitons in materials with self-defocusing saturable nonlinearity (2017)
Journal Article
Christian, J., & Lundie, M. (2017). Bistable Helmholtz dark spatial optical solitons in materials with self-defocusing saturable nonlinearity. Journal of Nonlinear Optical Physics and Materials, 26(02), https://doi.org/10.1142/S0218863517500242

We present, to the best of our knowledge, the first exact dark spatial solitons of a nonlinear Helmholtz equation with a self-defocusing saturable refractive-index model. These solutions capture oblique (arbitrary-angle) propagation in both the forwa... Read More about Bistable Helmholtz dark spatial optical solitons in materials with self-defocusing saturable nonlinearity.

Spontaneous spatial fractal pattern formation in dispersive systems (2017)
Journal Article
Huang, J., Christian, J., & McDonald, G. (2017). Spontaneous spatial fractal pattern formation in dispersive systems. Journal of Nonlinear Optical Physics and Materials, 26(01), https://doi.org/10.1142/S0218863517500096

We report spontaneous spatial optical fractal patterns in a ring cavity containing a thin slice of diffusive Kerr-type material. The Turing threshold instability condition is derived through linear analysis, and static patterns are found to be descri... Read More about Spontaneous spatial fractal pattern formation in dispersive systems.

Exact dipole solitary wave solution in metamaterials with higher-order dispersion (2016)
Journal Article
Min, X., Yang, R., Tian, J., Xue, W., & Christian, J. (2016). Exact dipole solitary wave solution in metamaterials with higher-order dispersion. Journal of Modern Optics, 63(Sup.3), 544-550. https://doi.org/10.1080/09500340.2016.1185178

We present an exact dipole solitary wave solution in a mutual modulation form of bright and dark solitons for a higher-order nonlinear Schrödinger equation with third- and fourth-order dispersion in metamaterials (MMs) using an ansatz method. Based... Read More about Exact dipole solitary wave solution in metamaterials with higher-order dispersion.

Helmholtz bright spatial solitons and surface waves at power-law optical interfaces (2012)
Journal Article
Christian, J., McCoy, E., McDonald, G., Sanchez-Curto, J., & Chamorro-Posada, P. (2012). Helmholtz bright spatial solitons and surface waves at power-law optical interfaces. Journal of Atomic, Molecular, and Optical Physics, 2012, 137967. https://doi.org/10.1155/2012/137967

We consider arbitrary-angle interactions between spatial solitons and the planar boundary between two optical materials with a single power-law nonlinear refractive index. Extensive analysis has uncovered a wide range of new qualitative phenomena in... Read More about Helmholtz bright spatial solitons and surface waves at power-law optical interfaces.

Wave envelopes with second-order spatiotemporal dispersion: II. Modulational instabilities and dark Kerr solitons (2012)
Journal Article
II. Modulational instabilities and dark Kerr solitons. Physical Review A, 86(2), 023839. https://doi.org/10.1103/PhysRevA.86.023839

A simple scalar model for describing spatiotemporal dispersion of pulses, beyond the classic “slowly-varying envelopes + Galilean boost” approach, is studied. The governing equation has a cubic nonlinearity and we focus here mainly on contexts with... Read More about Wave envelopes with second-order spatiotemporal dispersion: II. Modulational instabilities and dark Kerr solitons.

Wave envelopes with second-order spatiotemporal dispersion: II. Modulational instabilities and dark Kerr solitons (2012)
Journal Article
II. Modulational instabilities and dark Kerr solitons. Physical Review A, 86(2), 023839. https://doi.org/10.1103/PhysRevA.86.023839

A simple scalar model for describing spatiotemporal dispersion of pulses, beyond the classic “slowly-varying envelopes + Galilean boost” approach, is studied. The governing equation has a cubic nonlinearity and we focus here mainly on contexts with... Read More about Wave envelopes with second-order spatiotemporal dispersion: II. Modulational instabilities and dark Kerr solitons.

Wave envelopes with second-order spatiotemporal dispersion : I. Bright Kerr solitons and cnoidal waves (2012)
Journal Article
I. Bright Kerr solitons and cnoidal waves. Physical Review A, 86(2), 023838. https://doi.org/10.1103/PhysRevA.86.023838

We propose a simple scalar model for describing pulse phenomena beyond the conventional slowly-varying envelope approximation. The generic governing equation has a cubic nonlinearity and we focus here mainly on contexts involving anomalous group-vel... Read More about Wave envelopes with second-order spatiotemporal dispersion : I. Bright Kerr solitons and cnoidal waves.

Spontaneous spatial fractal pattern formation in absorptive systems (2012)
Journal Article
Huang, J. G., Christian, J. M., & McDonald, G. S. (2012). Spontaneous spatial fractal pattern formation in absorptive systems. Journal of Nonlinear Optical Physics and Materials, 21(2), 1-9. https://doi.org/10.1142/S021886351250018X

We predict, for the first time to our knowledge, that purely-absorptive nonlinearity can support spontaneous spatial fractal pattern formation. A passive optical ring cavity with a thin slice of saturable absorber is analyzed. Linear stability analys... Read More about Spontaneous spatial fractal pattern formation in absorptive systems.

Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics (2012)
Journal Article
Christian, J., McDonald, G., Hodgkinson, T., & Chamorro-Posada, P. (2012). Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics. Physical Review Letters, 108(3), 034101-1. https://doi.org/10.1103/PhysRevLett.108.034101

A generic nonparaxial model for pulse envelopes is presented. Classic Schro¨dinger-type descriptions of wave propagation have their origins in slowly-varying envelopes combined with a Galilean boost to the local time frame. By abandoning these two... Read More about Spatiotemporal dispersion and wave envelopes with relativistic and pseudorelativistic characteristics.