Skip to main content

Research Repository

Advanced Search

Outputs (22)

An optimisation of a chordwise slot to enhance lateral flow control on a UCAV (2022)
Journal Article
Ali, U., Chadwick, E., & Sugar-Gabor, O. (2022). An optimisation of a chordwise slot to enhance lateral flow control on a UCAV. Incas Bulletin, 14(4), 3-17. https://doi.org/10.13111/2066-8201.2022.14.4.1

This research aims to optimise a chordwise slot so that lateral flow control of a flying wing configuration can be enhanced. This was achieved by maximising the airflow rate over the trailing edge control surfaces of the wing. A higher rate of airf... Read More about An optimisation of a chordwise slot to enhance lateral flow control on a UCAV.

Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks (2021)
Journal Article
Sugar-Gabor, O. (2021). Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks. International Journal of Computer Applications in Technology, 66(1), 36-50. https://doi.org/10.1504/IJCAT.2021.119603

A non-intrusive reduced-order model for nonlinear parametric flow problems is developed. It is based on extracting a reduced-order basis from full-order snapshots via proper orthogonal decomposition and using both deep and shallow neural network a... Read More about Reduced-order modelling of parameterised incompressible and compressible unsteady flow problems using deep neural networks.

Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2021). Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies. Aeronautical Journal, 125(1286), 593-617. https://doi.org/10.1017/aer.2020.128

In this paper, recent developments in quasi-3D aerodynamic methods are presented. At their core, these methods are based on the Lifting-Line Theory and Vortex Lattice Method, but with a relaxed set of hypotheses, while also considering the effect o... Read More about Fast and accurate quasi-3D aerodynamic methods for aircraft conceptual design studies.

Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics (2020)
Journal Article
Soliman, M., El-Baz, A., Abdel-Aziz, M., Abdel-Aziz, N., & Sugar-Gabor, O. (2020). Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics. International journal of automotive and mechanical engineering (Kuantan), 17(4), 8234-8245. https://doi.org/10.15282/IJAME.17.4.2020.01.0621

The present work investigates the dynamic effect of wheel rotation on the aerodynamic characteristics of slick type (ST) wheel of Formula One racing cars using a computational approach. The ST wheel model was compared to experimental results as a val... Read More about Numerical investigation of the effect of tread pattern on rotating wheel aerodynamics.

Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks (2020)
Journal Article
Sugar-Gabor, O. (2021). Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks. International Journal for Numerical Methods in Fluids, 93(5), 1309-1331. https://doi.org/10.1002/fld.4930

A non-intrusive reduced-order model for nonlinear parametric flow problems is developed. It is based on extracting a reduced-order basis from high-order snapshots via proper orthogonal decomposition and using multi-layered feedforward artificial ne... Read More about Parameterised non-intrusive reduced-order model for general unsteady flow problems using artificial neural networks.

Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars (2020)
Journal Article
Sugar-Gabor, O., & Koreanschi, A. (2020). Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars. Journal of Aerospace Engineering, 33(5), https://doi.org/10.1061/%28ASCE%29AS.1943-5525.0001166

Aerodynamic shape optimization for the high-subsonic low-Reynolds number flow regime represents an area of on-going research. The interaction between supercritical compressible flow and laminar boundary layer separation is not well understood due to... Read More about Design of supercritical low-Reynolds number airfoils for fixed-wing flight on Mars.

A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies (2018)
Journal Article
Sugar-Gabor, O. (2018). A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies. Aeronautical Journal, 122(1254), 1199-1228. https://doi.org/10.1017/aer.2018.57

The lifting line theory is widely used for obtaining aerodynamic performance results in various engineering fields, from aircraft conceptual design to wind power generation. Many different models were proposed, each tailored for a specific purpose, t... Read More about A general numerical unsteady nonlinear lifting line model for engineering aerodynamics studies.

Numerical and experimental transition results evaluation for a morphing wing and aileron system (2018)
Journal Article
Botez, R., Koreanschi, A., Sugar-Gabor, O., Mebarki, Y., Mamou, M., Tondji, Y., …Concilio, A. (2018). Numerical and experimental transition results evaluation for a morphing wing and aileron system. Aeronautical Journal, 122(1251), 747-784. https://doi.org/10.1017/aer.2018.15

A new wing-tip concept with morphing upper surface and interchangeable conventional and morphing ailerons was designed, manufactured, bench and wind tunnel tested. The development of this wing tip model was performed in the frame of an international... Read More about Numerical and experimental transition results evaluation for a morphing wing and aileron system.

Numerical study of the circular cylinder in supersonic ground effect conditions (2018)
Journal Article
Sugar-Gabor, O. (2018). Numerical study of the circular cylinder in supersonic ground effect conditions. International review of aerospace engineering (CD-ROM), 11(1), https://doi.org/10.15866/irease.v11i1.13696

A numerical study of the aerodynamics of a circular cylinder section in proximity to the ground surface was performed, for Mach numbers of 1.5 and 2.9 and ground clearances between 2 and 0.125, non-dimensional with respect to the cylinder diameter. T... Read More about Numerical study of the circular cylinder in supersonic ground effect conditions.

Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization (2017)
Journal Article
Sugar-Gabor, O. (2017). Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization. Incas Bulletin, 9(3), 133-147. https://doi.org/10.13111/2066-8201.2017.9.3.11

In this paper, a simultaneous analysis and design method is derived and applied for a non-linear constrained aerodynamic optimization problem. The method is based on the approach of defining a Lagrange functional based on the objective function and t... Read More about Discrete adjoint-based simultaneous analysis and design approach for conceptual aerodynamic optimization.