Skip to main content

Research Repository

Advanced Search

Outputs (46)

Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface (2021)
Journal Article
Prakash, J., Tripathi, D., Beg, O., Tiwari, A. K., & Kumar, R. (2022). Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface. Heat Transfer, 51(2), 1746-1777. https://doi.org/10.1002/htj.22373

AbstractThis paper explores the combined effects of Coriolis force and electric force on the rotating boundary layer flow and heat transfer in a viscoplastic hybrid nanofluid from a vertical exponentially accelerated plate. The hybrid nanofluid compr... Read More about Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface.

Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(3), 926-941. https://doi.org/10.1177/09544089211052025

Motivated by developments in thermal duct processing, an investigation is presented to study the behavior of viscous nanoparticle suspensions flowing in a vertical duct subject to Fourier-type conditions. The left wall temperature is kept lower than... Read More about Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study.

Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium (2021)
Journal Article
Shahid, A., Bhatti, M., Beg, O., Animasaun, I., & Javid, K. (2021). Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium. International Journal of Modern Physics B, 35(29), 2150294. https://doi.org/10.1142/S0217979221502945

The current article presents a mathematical model for bi-directional convection magnetohydrodynamic (MHD) tangent hyperbolic nanofluid flow from the upper horizontal subsurface of a stretching parabolic surface to a non-Darcian porous medium, as a... Read More about Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium.

Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects (2021)
Journal Article
Shamshuddin, M., Mabood, F., & Beg, O. (2021). Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects. International Journal of Modelling and Simulation, https://doi.org/10.1080/02286203.2021.1977531

The objective of this study is to develop a mathematical model for chemically reacting magnetic nanofluid flow with thermophoretic diffusion, Brownian motion and Ohmic magnetic heating in a Darcian permeable regime. The current flow model also cons... Read More about Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects.

Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump (2021)
Journal Article
El Gendy, M., Beg, O., Kadir, A., Islam, M., & Tripathi, D. (2021). Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump. Journal of Mechanics in Medicine and Biology, 21(8), 2150058. https://doi.org/10.1142/S0219519421500585

Motivated by recent developments in bio-inspired medical engineering microscale pumps, in the present article a 3-dimensional sequential simulation of a peristaltic micro-pump is described to provide deeper insight into the hydromechanics of lamina... Read More about Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump.

Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study (2021)
Journal Article
Beg, O., Beg, T., Khan, W. A., & Uddin, M. J. (2022). Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study. Heat Transfer, 51(1), 1040-1061. https://doi.org/10.1002/htj.22341

AbstractA mathematical model is developed for viscous slip flow and heat transfer in water/Ethylene glycol‐based nanofluids containing metallic oxide nanoparticles, through a converging/diverging channel. We adopt the single‐phase Tiwari–Das model. T... Read More about Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study.

An executable method for an intelligent speech and call recognition system using a machine learning-based approach (2021)
Journal Article
Rajarajeswari, P., & Beg, O. (2021). An executable method for an intelligent speech and call recognition system using a machine learning-based approach. Journal of Mechanics in Medicine and Biology, 21(07), 2150055. https://doi.org/10.1142/S021951942150055X

This paper describes a novel call recognizer system based on the machine learning approach. Current trends, intelligence, emotional recognition and other factors are important challenges in the real world. The proposed system provides robustness wi... Read More about An executable method for an intelligent speech and call recognition system using a machine learning-based approach.

Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects (2021)
Journal Article
Tripathi, J., Vasu, B., Beg, O., & Gorla, R. (2022). Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects. Microvascular Research, 139, 104241. https://doi.org/10.1016/j.mvr.2021.104241

The present study considers the mathematical modelling of unsteady non-Newtonian hydro-magnetic nanohemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular). The Ostwald-De Waele power-law fluid mode... Read More about Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.

Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study (2021)
Journal Article
Chandrawat, R., Joshi, V., & Beg, O. (2021). Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study. Journal of Nanofluids, 10(3), 431-446. https://doi.org/10.1166/jon.2021.1792

The hydrodynamics of immiscible micropolar fluids are important in a variety of engineering problems, including biofluid dynamics of arterial blood flows, pharmacodynamics, Principle of Boundary layers, lubrication technology, short waves for heat-co... Read More about Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study.

Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles (2021)
Journal Article
Chandanam, V., Venkata Lakshmi, C., Venkatadri, K., Beg, O., & Prasad, V. (2021). Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. European Physical Journal Plus, 136(8), 885. https://doi.org/10.1140/epjp/s13360-021-01881-3

A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in... Read More about Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles.