Dr Salem Ameen S.A.Ameen1@salford.ac.uk
Lecturer
Optimizing deep learning networks using multi-armed bandits
Ameen, SA
Authors
Abstract
Deep learning has gained significant attention recently following their successful use for applications such as computer vision, speech recognition, and natural language processing. These deep learning models are based on very large neural networks, which can require a significant amount of memory and hence limit the range of applications.
Hence, this study explores methods for pruning deep learning models as a way of reducing their size, and computational time, but without sacrificing their accuracy.
A literature review was carried out, revealing existing approaches for pruning, their strengths, and weaknesses. A key issue emerging from this review is that there is a trade-off between removing a weight or neuron and the potential reduction in accuracy. Thus, this study develops new algorithms for pruning that utilize a framework, known as a multi-armed bandit, which has been successfully applied in applications where there is a need to learn which option to select given the outcome of trials. There are several different multi-arm bandit methods, and these have been used to develop new algorithms including those based on the following types of multi-arm bandits: (i) Epsilon-Greedy (ii) Upper Confidence Bounds (UCB) (iii) Thompson Sampling and (iv) Exponential Weight Algorithm for Exploration and Exploitation (EXP3).
The algorithms were implemented in Python and a comprehensive empirical evaluation of their performance was carried out in comparison to both the original neural network models and existing algorithms for pruning. The existing methods that are compared include: Random Pruning, Greedy Pruning, Optimal Brain Damage (OBD) and Optimal Brain Surgeon (OBS). The thesis also includes an empirical comparison with a number of other learning methods such as KNN, decision trees, SVM, Naïve Bayes, LDA, QDA, logistic regression, Gaussian process classifier, kernel ridge regression, LASSO regression, linear regression, Bayesian Ridge regression, boosting, bagging and random forests. The results on the data sets show that some of the new methods (i) generalize better than the original model and most of the other methods such as KNN and decision trees (ii) outperform OBS and OBD in terms of reduction in size, generalization, and computational time (iii) outperform the greedy algorithm in terms of accuracy.
Citation
Ameen, S. (in press). Optimizing deep learning networks using multi-armed bandits. (Thesis). The University of Salford
Thesis Type | Thesis |
---|---|
Acceptance Date | Dec 1, 2017 |
Deposit Date | Feb 21, 2018 |
Publicly Available Date | Feb 21, 2018 |
Files
Thesis_AFTER_viv3.pdf
(13.2 Mb)
PDF
You might also like
Methods for pruning deep neural networks
(2022)
Journal Article
Pruning neural networks using multi-armed bandits
(2019)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search