D Tripathi
Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics
Tripathi, D; Bushan, S; Beg, OA
Abstract
A mathematical model is developed to analyse electro-kinetic effects on unsteady peristaltic transport of blood in cylindrical vessels of finite length. The Newtonian viscous model is adopted. The analysis is restricted under Debye-Hückel linearization (i.e. wall zeta potential less than or equal to 25mV is sufficiently small). The transformed, non-dimensional conservation equations are derived via lubrication theory and long wavelength and the resulting linearized boundary value problem is solved exactly. The case of a thin electric double layer (i.e. where only slip electro-osmotic velocity considered) is retrieved as a particular case of the present model. The response in pumping characteristics (axial velocity, pressure gradient or difference, volumetric flow rate, local wall shear stress) to the influence of electro-osmotic effect (inverse Debye length) and Helmholtz-Smoluchowski velocity is elaborated in detail. Visualization of trapping phenomenon is also included and the bolus dynamics evolution with electro-kinetic effects examined. A comparative study of train wave propagation and single wave propagation is presented under the effects of thickness of EDL and external electric field. The study is relevant to electrophoresis in haemotology, electrohydrodynamic therapy and biomimetic electro-osmotic pumps.
Citation
Tripathi, D., Bushan, S., & Beg, O. (2017). Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. Journal of Mechanics in Medicine and Biology, 17(3), 1750052. https://doi.org/10.1142/S021951941750052X
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 27, 2016 |
Publication Date | Feb 6, 2017 |
Deposit Date | Oct 4, 2016 |
Publicly Available Date | Feb 6, 2018 |
Journal | Journal of Mechanics in Medicine and Biology (jmmb) |
Print ISSN | 0219-5194 |
Electronic ISSN | 1793-6810) |
Publisher | World Scientific Publishing |
Volume | 17 |
Issue | 3 |
Pages | 1750052 |
DOI | https://doi.org/10.1142/S021951941750052X |
Publisher URL | http://dx.doi.org/10.1142/S021951941750052X |
Related Public URLs | http://www.worldscientific.com/worldscinet/jmmb |
Files
J Mechanics in Medicine and Biology ELECTROHEMODYNAMIC PUMPING SEP 2016 ACCEPTED.pdf
(1.5 Mb)
PDF
You might also like
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search