Skip to main content

Research Repository

Advanced Search

Models of marine fish biodiversity : assessing predictors from three habitat classification schemes

Yates, KL; Mellin, C; Caley, MJ; Radford, B; Meeuwig, JJ

Models of marine fish biodiversity : assessing predictors from three habitat classification schemes Thumbnail


Authors

C Mellin

MJ Caley

B Radford

JJ Meeuwig



Abstract

Prioritising biodiversity conservation requires knowledge of where biodiversity occurs. Such knowledge, however, is often lacking. New technologies for collecting biological and physical data coupled with advances in modelling techniques could help address these gaps and facilitate improved management outcomes. Here we examined the utility of environmental data, obtained using different methods, for developing models of both uni- and multivariate biodiversity metrics. We tested which biodiversity metrics could be predicted best and evaluated the performance of predictor variables generated from three types of habitat data: acoustic multibeam sonar imagery, predicted habitat classification, and direct observer habitat classification. We used boosted regression trees (BRT) to model metrics of fish species richness, abundance and biomass, and multivariate regression trees (MRT) to model biomass and abundance of fish functional groups. We compared model performance using different sets of predictors and estimated the relative influence of individual predictors. Models of total species richness and total abundance performed best; those developed for endemic species performed worst. Abundance models performed substantially better than corresponding biomass models. In general, BRT and MRTs developed using predicted habitat classifications performed less well than those using multibeam data. The most influential individual predictor was the abiotic categorical variable from direct observer habitat classification and models that incorporated predictors from direct observer habitat classification consistently outperformed those that did not. Our results show that while remotely sensed data can offer considerable utility for predictive modeling, the addition of direct observer habitat classification data can substantially improve model performance. Thus it appears that there are aspects of marine habitats that are important for modeling metrics of fish biodiversity that are not fully captured by remotely sensed data. As such, the use of remotely sensed data to model biodiversity represents a compromise between model performance and data availability.

Citation

Yates, K., Mellin, C., Caley, M., Radford, B., & Meeuwig, J. (2016). Models of marine fish biodiversity : assessing predictors from three habitat classification schemes. PLoS ONE, 11(6), https://doi.org/10.1371/journal.pone.0155634

Journal Article Type Article
Acceptance Date May 2, 2016
Publication Date Jun 22, 2016
Deposit Date Jun 29, 2016
Publicly Available Date Jun 29, 2016
Journal PLoS ONE
Electronic ISSN 1932-6203
Publisher Public Library of Science
Volume 11
Issue 6
DOI https://doi.org/10.1371/journal.pone.0155634
Publisher URL http://dx.doi.org/10.1371/journal.pone.0155634
Related Public URLs http://journals.plos.org/plosone/article?id=10.1371%2Fjournal.pone.0155634

Files






You might also like



Downloadable Citations