Prof Osman Beg O.A.Beg@salford.ac.uk
Professor
High temperature electromagnetic materials fabrication systems in chemical engineering require ever more sophisticated theoretical and computational models for describing multiple, simultaneous thermophysical effects. Motivated by this application, the present article addresses transient magnetohydrodynamic heat and mass transfer in chemically-reacting fluid flow from an impulsively-started vertical perforated sheet. Thermal radiation flux, internal heat generation (heat source), Joule magnetic heating (Ohmic dissipation), thermo-diffusive and diffuso-thermal (i.e. cross-diffusion) effects and also viscous dissipation are incorporated in the mathematical model. To facilitate numerical solutions of the coupled, nonlinear boundary value problem, non-similar transformations are employed and the partial differential conservation equations are normalized into a dimensionless system of momentum, energy and concentration equations with associated boundary thermal conditions. An implicit finite difference method (FDM) is utilized to solve the unsteady equations. Verification of the FDM solutions for dimensionless velocity, temperature and concentration functions is achieved with a variational finite element method code (MAGNETO-FEM) and also a network simulation method code (MAG-PSPICE). The influence of the emerging thermo-physical parameters on transient velocity, temperature, concentration, wall shear stress, Nusselt number and Sherwood number is elaborated. The flow is accelerated with increasing thermal radiative flux, Eckert number, heat generation and Soret number whereas the flow is decelerated with greater wall suction, heat absorption, magnetic field and Prandtl number. Temperatures are also observed to be elevated with magnetic parameter, radiation heat transfer, Dufour number, heat generation (source) and Eckert number with the contrary effects computed for increasing suction parameter or Prandtl number. The species concentration is enhanced with Soret number and generative chemical reaction whereas it is depressed with greater wall suction, Schimidt number and destructive chemical reaction parameter
Beg, A., Ferdows, M., Beg, E., Ahmed, T., Wahiduzzaman, M., & Alam, M. (2016). Numerical investigation of radiative optically-dense transient magnetized reactive transport phenomena with cross diffusion, dissipation and wall mass flux effects. Journal of the Taiwan Institute of Chemical Engineers, 66, 12-26. https://doi.org/10.1016/j.jtice.2016.06.003
Journal Article Type | Article |
---|---|
Acceptance Date | Jun 3, 2016 |
Online Publication Date | Jun 27, 2016 |
Publication Date | Sep 1, 2016 |
Deposit Date | Jun 7, 2016 |
Publicly Available Date | Jun 27, 2017 |
Journal | Journal of the Taiwan Institute of Chemical Engineers |
Print ISSN | 1876-1070 |
Publisher | Elsevier |
Volume | 66 |
Pages | 12-26 |
DOI | https://doi.org/10.1016/j.jtice.2016.06.003 |
Publisher URL | http://dx.doi.org/10.1016/j.jtice.2016.06.003 |
Related Public URLs | http://www.journals.elsevier.com/journal-of-the-taiwan-institute-of-chemical-engineers/ |
JTICE D1501828 ACCEPTED manuscript JUNE 3RD 2016.pdf
(1 Mb)
PDF
Licence
http://creativecommons.org/licenses/by-nc-nd/4.0/
Publisher Licence URL
http://creativecommons.org/licenses/by-nc-nd/4.0/
Simulation of magneto-nano-bioconvective coating flow with blowing and multiple slip effects
(2024)
Journal Article
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
Apache License Version 2.0 (http://www.apache.org/licenses/)
Apache License Version 2.0 (http://www.apache.org/licenses/)
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2025
Advanced Search