Skip to main content

Research Repository

Advanced Search

Design, development and use of a deformable breast phantom to assess the relationship between thickness and lesion visibility in full field digital mammography

Ossati, MS

Authors

MS Ossati



Abstract

Aim of research:
This research aimed to design and develop a synthetic anthropomorphic breast
phantom with cancer mimicking lesions and use this phantom to assess the relationship
between lesion visibility and breast thickness in mammography.

Due to the risk of cancer induction associated with the use of ionising radiation on
breast tissues, experiments on human breast tissue was not practical. Therefore, a
synthetic anthropomorphic breast phantom with cancer mimicking lesions was needed to
be designed and developed in order to provide a safe platform to evaluate the relationship
between lesion visibility and breast thickness in mammography.

Method:
As part of this research custom Polyvinyl alcohol (PVAL) breast phantoms with
embedded PVAL lesions doped with contrast agent were fabricated and utilised. These
breast phantoms exhibited mechanical and X-ray properties which were similar to female
breast/breast cancer tissues. In order for this research to be useful for human studies,
patient safety factors have constrained the extent of this research. These factors include
compression force and radiation dose.

After acquiring mammograms of phantoms with varying thicknesses, the image
quality of the embedded lesions were evaluated both perceptually and mathematically.
The two-alternative forced choice (2AFC) perceptual method was used to evaluate image
quality of the lesions. For mathematical evaluation the following methods were utilised:
line profile analysis, contrast-to noise ratio (CNR), signal-to noise ratio (SNR) and figure
of merit (FOM).

Results:
The results of the visual perception analysis of the mammograms demonstrate that
as breast compressed thickness reduces the image quality increases. Additionally, the
results display a correlation in the reduction in the level of noise with the reduction in
breast thickness. This noise reduction was also demonstrated in the profile plots of the
lesions. The line profile analysis, in agreement with visual perception, shows
improvement of sharpness of the lesion edge in relation to the reduction of the phantom
thickness. The intraclass correlation coefficient (ICC) has shown a great consistency and
agreement among the observers for visibility, sharpness, contrast and noise. The ICC
results are not as conclusive for the size criterion.

Mathematical evaluation results also show a correlation of improvement in the
image quality with the reduction in breast thickness. The results show that for the
measures CNR, SNR, and FOM, the increase in image quality has a threshold after which
the image quality ceases to improve and instead begins to reduce. CNR and FOM
dropped when the breast phantom thickness was reduced approximately 40% of its initial
thickness. This consistently happened at the point where the filter changed from rhodium
(Rh) to molybdenum (Mo).

Conclusion:
This breast phantom study successfully designed and developed an
anthropomorphic compressible breast phantom with cancer mimicking lesions with
mechanical and X-ray properties similar to human breast tissue. This study also
demonstrates that as breast compressed thickness reduces the visibility of the perceived
lesion increases. The radiation dose generally decreases up to the point that the filter
changes from rhodium to molybdenum. After this point, the radiation dose increases
regardless of the phantom thickness. The results from this thesis are likely to have
implications for clinical practice, as they support the need for compression/thickness
reduction to enhance lesion visibility

Citation

Ossati, M. (in press). Design, development and use of a deformable breast phantom to assess the relationship between thickness and lesion visibility in full field digital mammography. (Thesis). University of Salford Manchester

Thesis Type Thesis
Acceptance Date Aug 21, 2015
Deposit Date Oct 20, 2015
Publicly Available Date Oct 20, 2015
Additional Information References : Acton, A. (2013). Issues in Applied Physics. Atlanta, Georgia: ScholarlyEditions. Aljarrah, A., & Miller, W. (2014). Trends in the distribution of breast cancer over time in the southeast of Scotland and review of the literature. ecancermedicalscience, 8. Allen, E., Hogg, P., Ma, W. K., & Szczepura, K. (2013). Fact or fiction: An analysis of the 10 kVp ‘rule’ in computed radiography. Radiography, 223–227. Almeida, C. D., Coutinho, C. M., Peixoto, J. E., & Dantas, B. M. (2009). Study of the attenuation coefficient of a breast phantom used in diagnostic radiology. International Nuclear Atlantic Conference. Altair Engineering. (2010). HyperMesh 10.0, User Manual. American Cancer Society. (2014, January 31). Breast Cancer Overview. Retrieved August 19, 2014, from http://www.cancer.org/: http://www.cancer.org/acs/groups/cid/documents/webcontent/003037-pdf.pdf American Cancer Society. (2014). Mammograms and Other Breast Imaging Tests . Retrieved from http://www.cancer.org/: http://www.cancer.org/acs/groups/cid/documents/webcontent/003178-pdf.pdf AnalyzeDirect. (2010). Analyze 10.0 Essential Training Guide. Andolina, V., & Lillé, S. (2010). Mammographic Imaging: A Practical Guide (Third ed.). Lippincott Williams & Wilkins. Andolina, V., & Lillé, S. (2011). Mammographic Imaging: A Practical Guide. Lippincott Williams & Wilkins. AR Custom Medical Products. (2007). Custom Compression Paddles. Retrieved July 24, 2014, from http://www.arcustommedical.com/: http://www.arcustommedical.com/products.htm Artinis Medical Systems. (2014). CDMAM 3.4. Retrieved from http://www.artinis.com/: http://www.artinis.com/product/cdmam_34 Artinis Medical Systems. (n.d.). CDMAM 3.4. Retrieved August 28, 2014, from http://www.artinis.com: http://www.artinis.com/product/cdmam_34 Astley, S. M. (2006). Digital Mammography: 8th International Workshop, IWDM 2006, Manchester, UK. Springer. Ayyala, R. S., Chorlton, M., Behrman, R. H., Kornguth, P. J., & Slanetz, P. J. (2008). Digital Mammographic Artifacts on Full-Field Systems: What Are They and How Do I Fix Them? RadioGraphics, 1999-2008. Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2000). A finite element model of the breast for predicting mechanical deformations during biopsy procedures. MMBIA, 38 - 45. Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2001). A Deformable Finite Element Model of the Breast for Predicting Mechanical Deformations under External Perturbations. Academic Radiology, 8(10), 965–975. Azar, F. S., Metaxas, D. N., & Schnall, M. D. (2002). Methods for modeling and predicting mechanical deformations of the breast under external perturbations. Medical Image Analysis, 6, 1–27. Bajpai, A., & Saini, R. (2005). Preparation and characterization of biocompatible spongy cryogels of poly(vinyl alcohol)–gelatin and study of water sorption behaviour. Polymer International, 54(9), 1233-1242. Baldelli, P., Phelan, N., & Egan, G. (2010). Investigation of the effect of anode/filter materials on the dose and image quality of a digital mammography system based on an amorphous selenium flat panel detector. The British Journal of Radiology, 83(988), 290–295. Bassett, L. W. (2000). Chapter 30F, Imaging the Breast. In R. J. Bast, D. Kufe, & R. Pollock (Eds.), Holland-Frei Cancer Medicine (5 ed.). Hamilton, Ontario, Canada: BC Decker. Bassett, L. W., Jackson, V., Fu, K., & Fu, Y. (2004). Diagnosis of Diseases of the Breast (Second ed.). Saunders. Bast, R. C., Bast, R. C., & Holland, J. F. (2000). Holland-Frei Cancer Medicine. 5th edition (5 ed.). B.C. Decker. Beam, C., Layde, P., & Sullivan, D. (1996, Jan 22). Variability in the interpretation of screening mammograms by US radiologists. Findings from a national sample. Archives of Internal Medicine, 156(2), 209-213. Benchimol, D., Näsström, K., & Shi, X. (2009). Evaluation of automatic exposure control in a direct digital intraoral system. Dentomaxillofacial Radiology, 38(6), 407–412. Bird, R., Wallace, T., & Yankaskas, B. (1992, September). Analysis of cancers missed at screening mammography. Radiology, 184(3), 613-617. Blindell, P., & Hogg, P. (2012). Software for image quality evaluation using a forced choice method. (p. 139). Manchester: United Kingdom Radiological Congress. Bliznakova, K., Bliznakov, Z., Bravou, V., Kolitsi, Z., & Pallikarakis, N. (2003). A three-dimensional breast software phantom for mammography simulation. Phys. Med. Biol, 48, 3699–3719. Bonakdar, S., Emami, S. H., Shokrgozar, M. A., Farhadi, A., Ahmadi, S. A., & Amanzadeh, A. (2010). Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage. Materials Science and Engineering: C, 30, 636-643. Boone, J. M., Fewel, T. R., & Jennings, R. J. (1997). Molybdenum, rhodium, and tungsten anode spectral models using interpolating polynomials with application to mammography. Med. Phys, 1863-1874. Boone, J. M., Nelson, T. R., Lindfors, K. K., & Seibert, J. A. (2001). Dedicated Breast CT: Radiation Dose and Image Quality Evaluation. Radiology, 221(3), 657-667. Bor, D., Tükel, S., Olgar, T., & Aydın, E. (2008). Variations in breast doses for an automatic mammography unit. Diagnostic and Interventional Radiology, 14, 122-126. Borg, M., Badr, I., & Royle, G. J. (2011). The use of a figure-of-merit (FOM) for optimisation in digital mammography: a literature review. Radiation Protection Dosimetry, 81-88. Brant, W. E., & Helms, C. A. (2012). Breast Imaging. In Fundamentals of Diagnostic Radiology (Fourth ed.). Wolters Kluwer. Breast Cancer Care. (2014, April 03). Breast calcifications. Retrieved August 15, 2014, from http://www.breastcancercare.org.uk/: http://www.breastcancercare.org.uk/breast-cancer-information/breast-awareness/benign-breast-conditions/breast-calcifications Broeders, M. J., Ten Voorde, M., Veldkamp, W. J., van Engen, R. E., van Landsveld – Verhoeven, C., ’t Jong – Gunneman, M. N., et al. (2015). Comparison of a flexible versus a rigid breast compression paddle: pain experience, projected breast area, radiation dose and technical image quality. European Radiology, 25(3), 821–829. Bro-nielsen, M. (1998). Finite Element Modeling in Surgery Simulation. Proceedings of the IEEE, 86(3), 490 - 503. Brooks, L., & Morley, M. (2013, May 14). Digital Mammography Cancer Detection Rates May Vary. Retrieved from http://www2.rsna.org/: http://www2.rsna.org/timssnet/media/pressreleases/PDF/pressreleasePDF.cfm?ID=669 Buist, D., Porter, P., Lehman, C., Taplin, S., & White, E. (2004, October 6). Factors contributing to mammography failure in women aged 40-49 years. Journal of the National Cancer Institute, 96(19), 1432-1440. Burgess, A. E., Jacobson, F. L., & Judy, P. F. (2001, April). Human observer detection experiments with mammograms and power-law noise. Medical Physics, 28(4), 419-437. Burrill, J., Dabbagh, Z., Gollub, F., & Hamady, M. (2007, November). Multidetector computed tomographic angiography of the cardiovascular system. Postgraduate Medical Journal, 83(985), 698-704. Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2011). 4.4 The Frequency Domain. In The Essential Physics of Medical Imaging (pp. Kindle Locations 1816-1987). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2011). 4.9 Signal-to-Noise Ratio. In The Essential Physics Of Medical Imaging (3 ed., pp. 91-92). London: Lippincott Williams & Wilkins. Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 4.5 Contrast Resolution: Anatomical Noise. In The Essential Physics of Medical Imaging (Third ed., p. Kindle Locations 2043). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 4.6 Noise Texture: The Noise Power Spectrum. In The Essential Physics of Medical Imaging (Third ed., pp. Kindle Locations 2200-2231). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 5.1 Analog and Digital representation of data. In The Essential Physics of Medical Imaging (p. Kindle Locations 2688). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 6.2 X-ray tube: Cathode. In The Essential Physics of Medical Imaging (Third ed., pp. kindle locations 4364-4372). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 6.2 X-ray Tubes. In The Essential Physics of Medical Imaging (pp. Kindle Locations 4342-4417). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 6.3 X-ray Tubes . In The Essential Physics of Medical Imaging (pp. Kindle Locations 4350-4655). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 7.12 Scattered Radiation in Projection Radiographic Imaging. In The Essential Physics of Medical Imaging (Third ed., pp. Kindle Locations 5556-5715). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). 8.5 Digital Mammography. In The Essential Physics of Medical Imaging (Third ed., pp. Kindle Locations 6277 - 6513). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). Computed Tomography. In The Essential Physics of Medical Imaging (Third ed., pp. Kindle Locations 7342-7854). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). The essential physics of medical imaging (3 ed.). Bushberg, J. T., Seibert, J. A., Leidholdt, E. M., & Boone, J. M. (2012). The Essential Physics of Medical Imaging (Third ed.). Philadelphia, PA. USA: Lippincot (Wolters Kluwer Health). Butler, P., Mitchell, A., & Ellis, H. (2007). Applied Radiological Anatomy for Medical Students. Cambridge University Press. Canadian Cancer Society. (2014). Mammography. Retrieved July 22, 2014, from http://www.cancer.ca: http://www.cancer.ca/en/cancer-information/diagnosis-and-treatment/tests-and-procedures/mammography Cancer Research UK. (2014, November). Breast cancer. Retrieved from http://publications.cancerresearchuk.org/: http://publications.cancerresearchuk.org/downloads/product/CS_KF_BREAST.pdf Cancer Research UK. (2014, January 31). Breast cancer mortality statistics. Retrieved August 19, 2014, from http://www.cancerresearchuk.org/: http://info.cancerresearchuk.org/cancerstats/types/breast/mortality/uk-breast-cancer-mortality-statistics#sex Cancer Research UK. (2014, July 30). Breast cancer tests. Retrieved August 19, 2014, from http://www.cancerresearchuk.org/:http://cancerhelp.cancerresearchuk.org/type/breast-cancer/diagnosis/breast-cancer-tests Cancer Research UK. (2014, July 30). Mammograms in breast screening. Retrieved August 19, 2014, from http://www.cancerresearchuk.org: http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/about/screening/mammograms-in-breast-screening Cancer Research UK. (2014, July 30). TNM breast cancer staging. Retrieved August 26, 2014, from http://www.cancerresearchuk.org: http://www.cancerresearchuk.org/cancer-help/type/breast-cancer/treatment/tnm-breast-cancer-staging cancer.net. (2014). Breast MRI for the Early Detection of Breast Cancer. Retrieved from http://www.cancer.net/: http://www.cancer.net/navigating-cancer-care/diagnosing-cancer/tests-and-procedures/breast-mri-early-detection-breast-cancer Carlton, R., & Adler, A. (2012). Principles of Radiographic Imaging: An Art and A Science. Cengage Learning. Carter, C., & Veale, B. (2014). Digital Radiography and PACS (Second ed.). Mobsy. Cashman, T. J. (2010). NURBS-compatible subdivision surfaces. NURBS-compatible subdivision surfaces. University of Cambridge Computer Laboratory. Centre for Evidence-based Purchasing. (2009, March). Buyer's guide - Multi-slice CT scanners - CEP08007. Chakraborty, D. P. (2005). Recent advances in observer performance methodology: jackknife free-response ROC (JAFROC). Radiation protection dosimetry, 114(1-3), 26-31. Cherry, P., & Duxbury, A. (2009). Practical Radiotherapy: Physics and Equipment. John Wiley & Sons. Chevalier, M., Leyton, F., Tavares, M. N., Oliveira, M., da Silva, T. A., & Peixoto, J. E. (2012). Image Quality Requirements for Digital Mammography in Breast Cancer Screening. In Imaging of the Breast - Technical Aspects and Clinical Implication. Madrid, Spain: InTech. Chiarelli, A., Edwards, S., Prummel, M., Muradali, D., Majpruz, V., Done SJ, B. P., et al. (2013). Digital compared with screen-film mammography: performance measures in concurrent cohorts within an organized breast screening program. 268(3), 684-693. Chida, K., Komatsu, Y., Sai, M., Nakagami, A., Yamada, T., Yamashita, T., et al. (2009). Reduced compression mammography to reduce breast pain. Clinical Imaging, 7-10. Chotas, H. G., Dobbins III, J. T., & Ravin, C. E. (1999). Principles of digital radiography with large-area, electronically readable detectors: a review of the basics. Radiology, 595-599. Chung, J. H., Rajagopal, V., Nielsen, P. M., & Nash, M. P. (2008). A biomechanical model of mammographic compressions. Biomech Model Mechanobiol, 43-52. Chung, J. H., Rajagopal, V., Nielsen, P. M., & Nash, M. P. (2008). Modelling mammographic compression of the breast. Med Image Comput Comput Assist Interv, 758-765. Clark, R. A., Levine, R., & Snedeker, S. (1997). The Biology of Breast Cancer. Retrieved 08 16, 2012, from http://envirocancer.cornell.edu/Factsheet/General/fs5.biology.cfm#g Coombs, N. J., & Boyages, J. (2005). Multifocal and Multicentric Breast Cancer: Does Each Focus Matter? JOURNAL OF CLINICAL ONCOLOGY, 23. Cournane, S., Cannon, L., Browne, J. E., & Fagan, A. J. (2010). Assessment of the accuracy of an ultrasound elastography liver scanning system using a PVA-cryogel phantom with optimal acoustic and mechanical properties. Physics in Medicine and Biology, 55, 5965–5983. Cunha, D., Tomal, A., & Poletti, M. (2012). Optimization of x-ray spectra in digital mammography through Monte Carlo simulations. Physics in Medicine and Biology, 57(7), 1919-1935. Cunningham, I. A. (2000). Applied linear-systems theory. In J. Beutel, H. L. Kundel, & R. L. Metter, Handbook of medical imaging. Bellingham, WA: SPIE. Cush, S. (2007, February). Routine Quality Control Tests for Full Field Digital Mammography Systems. National Health Service, NHS Cancer Screening Programmes. Sheffield, England: NHS Cancer Screening Programmes. DailyMed. (2012, 3). Retrieved from http://dailymed.nlm.nih.gov/: http://dailymed.nlm.nih.gov/dailymed/lookup.cfm?setid=549d38db-d4ed-4708-8f76-7cdaa157063f Dance, D. R., Skinner, C. L., Young, K. C., Beckett, J. R., & Kotre, C. J. (2000). Additional factors for the estimation of mean glandular breast dose using the UK mammography dosimetry protocol. Physics in Medicine and Biology, 3225–3240. Danziger, K., & Simonsen, J. (2011). What Are the Different Types of Breast Cancer. Retrieved August 13, 2012, from http://www.genetichealth.com/brov_types_of_breast_cancer.shtml Defreitas, K. F., Pellegrino, A., Farbizio, T. A., Janer, R., & Hitzke, G. (2008). Patent No. US 7319735 B2. US. del Palomar, A. P., Calvo, B., Herrero, J., López, J., & Doblaré, M. (2008). A finite element model to accurately predict real deformations of the breast. Med Eng Phys, 1089-1097. del Palomar, A. P., Calvo, B., Herrero, J., López, J., & Doblaré, M. (2008). A finite element model to accurately predict real deformations of the breast. Medical Engineering & Physics, 30, 1089–1097. del Turco, M. R., Mantellini, P., Ciatto, S., Bonardi, R., Martinelli, F., Lazzari, B., et al. (2007). Full-field digital versus screen-film mammography: comparative accuracy in concurrent screening cohorts. AJR Am J Roentgenol, 860-866. Dewerd, L. A., & Kissick, M. (2014). The Phantoms of Medical and Health Physics. Madison, USA: Springer. Dobbins III, J. T. (2000). Image quality metrics for digital systems. In R. L. Metter, J. Beutel, & H. L. Kundel, Handbook of medical imaging (Vol. 1, pp. 161-222). Bellingham: SPIE. Donahue, E. J. (2013). Ultrasound-Guided Breast Biopsy Tissue Sampling: Technique and Breast Ultrasound Characteristics of Benign and Malignant Lesions. In D. S. Francescatti, & M. J. Silverstein, Breast cancer- A New Era in Management (p. 144). Springer. Donga, S., Chu, T., Lee, J., Lan, G., Wua, T., Y.H., Y., et al. (2002). Estimation of mean-glandular dose from monitoring breast entrance skin air kerma using a high sensitivity metal oxide semiconductor field effect transistor (MOSFET) dosimeter system in mammography. Applied Radiation and Isotopes, 57(6), 791–799. Dronkers, D. J., & Hendriks, J. H. (2011). The practice of mammography: pathology, technique, interpretation, adjunct modalities. Thieme. Dustler, M., Andersson, I., Förnvik, D., & Tingberg, A. (2012). The Effect of Breast Positioning on Breast Compression in Mammography: a Pressure Distribution Perspective. SPIE Medical Imaging, 8313. Elkin, E. B., Hudis, C., Begg, C. B., & Schrag, D. (2005). The Effect of Changes in Tumor Size on Breast - Carcinoma Survival in the U.S.: 1975–1999. Wiley InterScience, 1149–1157. ElSharkawy, A. M. (2014). Breast Cancer. In R. A. Al-Naggar, Principles and Practice of Cancer Prevention and Control. Foster City, CA, USA: OMICS Group eBooks. Emanuelli, S., Rizzi, E., Amerio, S., Fasano, C., & Cesarani, F. (2011). Dosimetric and image quality comparison of two digital mammography units with different target/filter combinations: Mo/Mo, Mo/Rh, W/Rh, W/Ag. Radiologia medica, 116(2), 310-318. Eng, J. (2005, July). Receiver operating characteristic analysis: a primer. Academic radiology, 12(7), 909-916. Erkamp, R., Wiggins, P., Skovoroda, A., Emelianov, S., & O’Donnell, M. (1998). MEASURING THE ELASTIC MODULUS OF SMALL TISSUE SAMPLES. Retrieved 08 16, 2012, from http://web.eecs.umich.edu/~erkamp/pdfpapers/Paper%201%20-%20measuring.pdf Espat, A. (2012). Lumpy or Dense: Your "Breast" Defense. Retrieved from http://www.mdanderson.org: http://www.mdanderson.org/publications/focused-on-health/issues/2010-october/lumpybreast.html Exponent Inc. (2010). Finite Element Analysis for Medical Devices & Biomaterials. Retrieved from http://www.exponent.com: http://www.exponent.com/finite-element-analysis-for-medical-devices_biomed/ Fawcett, T. (2006). An introduction to ROC analysis. ScienceDirect, 861–874. Ferreira, T. (2012, 4). Analyze Menu. Retrieved from http://rsbweb.nih.gov/: http://rsbweb.nih.gov/ij/docs/menus/analyze.html#manager Fieselmann, A., Fischer, D., Hilal, G., Dennerlein, F., Mertelmeier, T., & Uhlenbrock, D. (2013). Full-field digital mammography with grid-less acquisition and software-based scatter correction: Investigation of dose. Proceedings of SPIE Medical Imaging 2013: Physics of Medical Imaging, 8668. Fischer, U., Baum, F., Obenauer, S., Luftner-Nagel, S., von Heyden, D., Vosshenrich, R., et al. (2002). Comparative study in patients with microcalcifications: full-field digital mammography vs screen-film mammography. Eur Radiol, 2679-2683. Fischmann, A., Siegmann, K. C., Wersebe, A., Claussen, C. D., & Müller-Schimpfle, M. (2005). Comparison of full-field digital mammography and film-screen mammography: image quality and lesion detection. Br J Radiol, 312-315. Fornage, B. D. (2006). Breast cancer. In W. H. Winchester. Fosbinder, R., & Orth, D. (2011). Essentials of Radiologic Science. Lippincott Williams & Wilkins. Freitas, A. G., Kemp, C., Louveira, M. H., Fujiwara, S. M., & Campos, L. F. (2006). Digital mammography: current view and future applications. Radiologia Brasileira, 39. Fritsch, H., & Kuehnel, W. (2007). Color Atlas of Human Anatomy, Volume 2 (5 ed., Vol. 2). Fromageau, J., Brusseau, E., Vray, D., Gimenez, G., & Delachartre, P. (2003). Characterization of PVA cryogel for intravascular ultrasound elasticity imaging. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 50(10), 1318-1324. Fromageau, J., Gennisson, J., Schmitt, C., Maurice, R., Mongrain, R., & Cloutier, G. (2007). Estimation of polyvinyl alcohol cryogel mechanical properties with four ultrasound elastography methods and comparison with gold standard testings. IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 54(3), 498-509. Gammex Inc. (2014). "Rachel" Anthropomorphic Breast. Retrieved August 16, 2014, from http://www.gammex.com: http://www.gammex.com/n-portfolio/productpage.asp?mode=preview&id=303 Gammex Inc. (2014). Steriotactic breast biopsy phantom. Retrieved July 25, 2014, from http://www.gammex.com/: http://www.gammex.com/n-portfolio/productpage.asp?id=316 Geddes, D. T. (2007). Inside the Lactating Breast: The Latest Anatomy Research. J Midwifery Womens Health, 52(6), 556–563. Gefena, A., & Dilmoney, B. (2007). Mechanics of the normal woman’s breast. Technology and Health Care, 15(4), 259-271. Geller, B., Barlow, W., Ballard-Barbash, R., Ernster, V., Yankaskas, B., Sickles, E., et al. (2002). Use of the American College of Radiology BI-RADS to Report on the Mammographic Evaluation of Women with Signs and Symptoms of Breast Disease. Radiology, 536-542. Gisev, N., Bell, J. S., & Chen, T. F. (2013). Interrater agreement and interrater reliability: key concepts, approaches, and applications. Research in Social and Administrative Pharmacy, 9(3), 330-338. Goel, A., & Pacifici, S. (2014). PGMI evaluation system. Retrieved 12 14, 2014, from http://radiopaedia.org: http://radiopaedia.org/articles/pgmi-evaluation-system Goergen, S. (2009). Iodine-containing contrast medium (ICCM). Retrieved August 3, 2014, from http://www.insideradiology.com.au: http://www.insideradiology.com.au/pages/view.php?T_id=21#.U90l6ONdVyw Goldberger, J. J., & Ng, J. (2010). Practical Signal and Image Processing in Clinical Cardiology. Springer. Goldman, L. W. (2007). Principles of CT and CT Technology. Journal of nuclear medicine technology, 35(3), 115-128. Goldman, L. W. (2008, June). Principles of CT: Multislice CT. Journal of nuclear medicine technology, 36(2), 57-68. Gupta, S., Webster, T. J., & Sinha, A. (2011). Evolution of PVA gels prepared without crosslinking agents. Mater Med, 22, 1763–1772. Halls, S. B. (2011, March 23). Breast abnormalities typically discovered by mammogram. Retrieved August 19, 2014, from http://www.breast-cancer.ca: http://www.breast-cancer.ca/screening/mammogram-abnormalities.htm Hambly, N. M., McNicholas, M. M., Phelan, N., Hargaden, G. C., O'Doherty, A., & Flanagan, F. L. (2009). Comparison of Digital Mammography and Screen-Film Mammography in Breast Cancer Screening: A Review in the Irish Breast Screening Program. AJR, 193(4), 1010-1018. Hammer, P. E., Sacks, M. S., del Nido, P. J., & Howe, R. D. (2011). Mass-Spring Model for Simulation of Heart Valve Tissue Mechanical Behavior. Ann Biomed Eng, 1668-79. Han, L., Hipwell, J. H., Tanner, C., Taylor, Z., Mertzanidou, T., Cardoso, J., et al. (2012). Development of patient-specific biomechanical models for predicting large breast deformation. Physics in Medicine and Biology, 57. Hardy, K. (2012). Managing Monitors for Digital Mammography. Radiology Today, 13(10), 26. Harish, M. G., Konda, S. D., MacMahon, H., & Newstead, G. M. (2007). Breast Lesions Incidentally Detected with CT:What the General Radiologist Needs to Know. RadioGraphics, 37-51. Hashimoto, I. (2008). Practical digital mamography. Thieme. Hassan, C. M., & Peppas, N. A. (2000). Structure and Applications of Poly(vinyl alcohol) Hydrogels Produced by Conventional Crosslinking or by Freezing/Thawing Methods. Advances in Polymer Science, 153, 37-65. Hassan, C. M., Ward, J., & Peppas, N. A. (2000). Modeling of crystal dissolution of poly(vinyl alcohol) gels produced by freezing/thawing processes. Polymer, 6729–6739. Hauge, I. H., Hogg, P., Connolly, P., McGill, G., & Claire, M. (2012). The readout thickness versus the measured thickness for a range of SFM. Medical physics, 39(1), 263-271. Heddson, B., Rönnow, K., Olsson, M., & Miller, D. (2007). Digital versus screen-film mammography: a retrospective comparison in a population-based screening program. Eur J Radiol, 419-425. Helvie, M. A. (2010). Digital Mammography Imaging: Breast Tomosynthesis and Advanced Applications. Radiologic clinics of North America, 48(5), 917-929. Hendee, W. R. (2013). Physics of mammography imaging. Hendrick, R. E., Pisano, E. D., Averbukh, A., Moran, C., Berns, E. A., Yaffe, M. J., et al. (2010). Comparison of Acquisition Parameters and Breast Dose in Digital Mammography and Screen-Film Mammography in the American College of Radiology Imaging Network Digital Mammographic Imaging Screening Trial. American Journal of Roentgenology, 194(2), 362-369. Henrikson, G. C., Mafee, M. F., Flanders, A. E., Kriz, R. J., & Peyman, G. A. (1987). CT Evaluation of Plastic Intraocular Foreign Bodies. American journal of neuroradiology, 8(2), 378-379. Herrmann, T. (2008). Computed Radiography and Digital Radiography: A Comparison of Technology, Functionality, Patient Dose, and Image Quality. Retrieved November 11, 2013, from http://www.eradimaging.com/: http://www.eradimaging.com/site/article.cfm?ID=535#.U9oqhONdVyx Heywang-Köbrunner, S. H., Hacker, A., & Sedlacek, S. (2011). Advantages and Disadvantages of Mammography Screening. Breast Care, 199-207. Hologic Inc. (2014). Full-field digital mammography unit -Selenia. Retrieved July 22, 2014, from http://www.medicalexpo.com: http://www.medicalexpo.com/prod/hologic/full-fields-digital-mammography-units-70711-428957.html Hologic Inc. (n.d.). User Manual for Selenia Software. Chapter 3- using the patient and patient view screens. Huda, W., & Slone, R. (2007). Review of Radiological Imaging:Mammography (Lecture 007). Retrieved August 12, 2014, from http://www.uiowa.edu/: http://www.uiowa.edu/hri/courses/physicsOfMedicalImagingReview/lectureTalk007.html Huda, W., Scalzetti, E. M., & Levin, G. (2000). Technique Factors and Image Quality as Functions of Patient Weight at Abdominal CT. Radiology, 217(2). Imaginis Corporation. (2010, December). Mammogram report. Retrieved August 26, 2014, from http://www.imaginis.com/: http://www.imaginis.com/mammography/mammogram-report-1 Imaginis Corporation. (2014). Diagnostic Mammography. Retrieved August 15, 2014, from http://www.imaginis.com: http://www.imaginis.com/mammography/diagnostic-mammography-2 Indrajit, I. K., & Verma, B. S. (2009). Monitor diplays in radology: part 2. The Indian Journal of Radiology & Imaging, 94-98. International Atomic Energy Agency. (2013). Mammography (radiography of the breast). Retrieved August 26, 2014, from https://rpop.iaea.org: https://rpop.iaea.org/rpop/rpop/content/informationfor/healthprofessionals/1_radiology/mammography/mammography-technique.htm International Atomic Energy Agency. (2013). Mammography Screening. Retrieved from https://rpop.iaea.org: https://rpop.iaea.org/RPOP/RPoP/Content/InformationFor/HealthProfessionals/1_Radiology/Mammography/MammographyScreen.htm Jarrousse, O. (2011). Modified Mass-Spring System for Physically Based Deformation Modeling. Retrieved from http://www.ibt.kit.edu/: http://www.ibt.kit.edu/download/PRJ_2011-02-10_O_Jarrousse.pdf Jiang, S., Liu, S., & Feng, W. (2011). PVA hydrogel properties for biomedical application. Journal of the Mechanical Behavior of Biomedical Materials, 4(7), 1228-1233. Johns, P., & Yaffe, M. (1987). X-ray characterisation of normal and neoplastic breast tissues. Physics in Medicine and Biology, 32(6), 675-95. Johnson, J. O., & Robins, J. M. (2012). CT Imaging: Radiation Risk Reduction—Real-Life Experience in a Metropolitan Outpatient Imaging Network. American College of Radiology, 9(11), 808-813. Jones, D. W., Hogg, P., & Seeram, E. (2013). Practical SPECT/CT in Nuclear Medicine. Springer. Joy, J. E., Penhoet, E. E., & Petitti, D. B. (2005). Saving Women's Lives: Strategies for Improving Breast Cancer Detection and Diagnosis. Washington, D.C.: National Academies Press. Kaabi, F. A., Bariki, N. A., & Janeczek, J. (2013). Variation of the Breast Mean Glandular Doses According to Breast Thicknesses. In World Congress on Medical Physics and Biomedical Engineering, 39, 1125-1127. Kalender, W. (2011). Computed Tomography. Publicis. Kalender, W. (2011). Computed Tomography Fundamentals, System Technology, Image Quality, Applications (Third ed.). Publicis. Kaplan, D., & Glass, L. (1995). Understanding Nonlinear Dynamics. Springer, 19. Karahaliou, A. N., Arikidis, N. S., Skiadopoulos, S. G., Panayiotakis, G. S., & Costaridou, L. I. (2012). Computerized Image Analysis of Mammographic Microcalcifications: Diagnosis and Prognosis. In N. Uchiyama (Ed.), Mammography - Recent Advances (pp. 321-340). InTech. Kayar, R., Civelek, S., Cobanoglu, M., Gungor, O., Catal, H., & Emiroglu, M. (2011). Five Methods of Breast Volume Measurement: A Comparative Study of Measurements of Specimen Volume in 30 Mastectomy Cases. Breast Cancer: Basic and Clinical Research(5), 43–52. Kempston, M. P., Mainprize, J. G., & Yaffe, M. J. (2006). Digital Mammography, 8th International Workshop. Springer-Verlag Berlin Heidelberg. Kharine, A., Manohar, S., Seeton, R., Kolkman, R. G., Bolt, R. A., Steenbergen, W., et al. (2006). Poly(vinyl alcohol) gels for use as tissue phantoms in photoacoustic mammography. Physics in Medicine and Biology, 48, 357-370. Kim, S., Lee, G., Lee, S., Park, S., Pyo, H., & Cho, J. (1999). Body fat measurement in computed tomography image. Biomedical sciences instrumentation, 35, 303-308. Kimme-Smith, C. (1999). New Digital Mammography Systems May Require Different X-ray Spectra and, Therefore, More General Normalized Glandular Dose Values. Radiology, 213(1), 7-10. King, D. M., Moran, C. M., McNamara, J. D., Fagan, A. J., & Browne, J. E. (2011). Development of a vessel-mimicking material for use in anatomically realistic Doppler flow phantoms. Ultrasound in medicine & biology, 37(5), 813-826. Kolb, T. M., Lichy, J., & Newhouse, J. H. (2002). Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology, 165-175. Korf, A., Herbst, C., & Rae, W. (2009). The relationship between compression force, image quality and radiation dose in mammography. South African Journal of Radiology, 13. Krouskop, T. A., Wheeler, T. M., Kallel, F., Garra, B. S., & Timothy, H. (1998). Elastic Moduli of Breast and Prostate Tissues under Compression. Ultrasonic imaging, 20(4), 260-274. Krupinski, E. (2010). Current perspectives in medical image perception. Attention, Perception, & Psychophysics, 75(5), 1205-1217. Krupinski, E. (2010). Perceptual factor in reading medical images. In E. Samei, & E. Krupinski, The handbook of Medical Image Perception and Techniques (p. 82). Krupinski, E., & Borah, J. (n.d.). Eye Tracking Helps Improve Accuracy in Radiology. Retrieved July 30, 2014, from http://www.photonics.com/: http://www.photonics.com/Article.aspx?AID=43855 Kyoto Kagaku. (n.d.). Breast Ultrasound Examination Phantom "BREAST FAN". Retrieved August 19, 2014, from http://www.kyotokagaku.com: http://www.kyotokagaku.com/products/detail03/pdf/us-6_catalog.pdf Lai, C. J., Shaw, C. C., Chen, L., Altunbas, M. C., Liu, X., Han, T., et al. (2007). Visibility of microcalcification in cone beam breast CT − Effects of x-ray tube voltage and radiation dose. National Institute of Health Medical Physics, 34(7), 2995-3004. Lança, L., & Silva, A. (2009). Digital radiography detectors – A technical overview: Part 2. Radiography, 15(2), 134–138. Lança, L., & Silva, A. (2013). Digital Imaging Systems for plain Radiography. Springer. Lazos, D., Kolisti, Z., & Pallikarakis, N. (2000). A software data generator for radiographic imaging investigations. IEEE Transactions on Infirmation Technology in Biomedicine, 4(1), 76-79. Li, C. M., Segars, W. P., Lo, J. Y., Veress, A. I., Boone, J. M., & Dobbins III, J. T. (2008). Three-Dimensional Computer Generated Breast Phantom Based on Empirical Data. Proceedings of SPIE, 6913, 691314-1. Li, X., & Samei, E. (2010). Logistical issues in designing perception experiments. In E. Samei, & E. Krupinski (Eds.), The Handbook of Medical Image Perception and Techniques (pp. 177-186). Cambridge: Cambridge University Press. Ljungberg, M., Strand, S.-E., & King, M. A. (2013). Monte Carlo Calculations in Nuclear Medicine. Boca Raton, FL: CRC Press. Lozinsky, V. I., & Plieva, F. M. (1998). Poly(vinyl alcohol) cryogels employed as matrices for cell immobilization. 3. Overview of recent research and developments. enzyme microb. technology., 227–242. Maddox, T. G. (2002). Adverse Reactions to Contrast Material: Recognition, Prevention, and Treatment. Retrieved August 3, 2014, from http://www.aafp.org/afp: http://www.aafp.org/afp/2002/1001/p1229.html Madjar, H., & Mendelson, E. B. (2011). Practice of Breast Ultrasound: Techniques, Findings, Differential Diagnosis (Second ed.). Thieme. Manning, D. J., Ethell, S. C., & Donovan, T. (2004). Detection or decision errors? Missed lung cancer from the posteroanterior chest radiograph. The British journal of radiology, 77(915), 231-235. Markey, M. K. (2013). Physics of mammographic imaging. CRC press. Marshall University. (2009, 10). Breast Cancer – General Information. Retrieved 08 16, 2012, from www.marshall.edu: http://www.marshall.edu/wpmu/wcenter/breast-and-cervical-cancer/breast-cancer-general-information/ Martin, A. (2008, February). Adrian's FWHM V1.1 code documentation. Retrieved August 26, 2014, from http://rsbweb.nih.gov/: http://rsbweb.nih.gov/ij/plugins/fwhm/ Mathers, N., Fox, N., & Amanda, H. (2009). Surveys and Questionnaires. Retrieved from http://www.rds-yh.nihr.ac.uk/: http://www.rds-yh.nihr.ac.uk/wp-content/uploads/2013/05/12_Surveys_and_Questionnaires_Revision_2009.pdf Mawdsley, G., Tyson, A., Peressotti, C., Jong, R., & Yaffe, M. (2009). Accurate estimation of compressed breast thickness in mammography. Medical physics, 36(2), 577-586. Mayo Clinic. (2015). Ultrasound-guided breast biopsy. Retrieved from http://www.mayoclinic.org: http://www.mayoclinic.org/tests-procedures/breast-biopsy/multimedia/ultrasound-guided-breast-biopsy/img-20007415 Mazumdar, M. D. (n.d.). ANATOMY OF THE FEMALE BREAST. Retrieved August 17, 2012, from http://www.breastcancertreatment.in/breast_anatomy.htm McCormack, V. A., & dos Santos, S. (2006). Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiology Biomarkers & Prevention, 15(6), 1159-1169. McCullagh, J. B., Baldelli, P., & Phelan, N. (2010). Measured Dose versus Organ Dose Performance in Digital Mammography Systems. In J. Martí, A. Oliver, J. Freixenet, & R. Martí (Eds.), Digital Mammography: Lecture Notes In Computer Science (Vol. 6136, pp. 86-91). Springer. McCullagh, J. B., Baldelli, P., & Phelan, N. (2011). Clinical dose performance of full field digital mammography in a breast screening programme. British Journal of Radiology, 84(1007), 1027–1033. MD Publishing Inc. (2012). Product Showroom: Mammography. Retrieved July 22, 2014, from http://medicaldealer.com: http://medicaldealer.com/sony-5mp-diagnostic-display/ MedCalc . (2015). Retrieved from https://www.medcalc.org/: https://www.medcalc.org/ Medical Services Advisory Committee . (2008). Digital mammography for breast cancer screening, surveillance and diagnosis. Medical Services Advisory Committee . Sydney, Australia: Commonwealth of Australia. Mehrabian, H., & Samani, A. (2009). Constrained hyperelastic parameters reconstruction of PVA (Polyvinyl) Alcohol) phantom undergoing large deformation. SPIE, 7261. Mello-Thoms, C., Trieu, P., & Brennan, P. (2014). Going on with false beliefs: What if satisfaction of search was really suppression of recognition? Spie Digital Library, 9037. Mercer, C. E., Hogg, P., Cassidy, S., & Denton, E. R. (2013). Does an increase in compression force really improve visual image quality in mammography? – An initial investigation. Radiography, 363–365. Mercer, C. E., Hogg, P., Szczepura, K., & Denton, E. R. (2013). Practitioner compression force variation in mammography: A 6-year study. Radiology, 200–206. Millon, L. E., Mohammadi, H., & Wan, W. K. (2006). Anisotropic Polyvinyl Alcohol Hydrogel for Cardiovascular Applications. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 79(2), 305-311. National Breast Cancer Foundation. (2012). Breast Anatomy. Retrieved 08 15, 2014, from http://www.nationalbreastcancer.org/: http://www.nationalbreastcancer.org/breast-anatomy National Cancer Institute. (2014, March 28). Breast Cancer Screening. Retrieved August 19, 2014, from http://www.cancer.gov: http://www.cancer.gov/cancertopics/pdq/screening/breast/Patient/page3 NHS. (2014). http://www.nhs.uk. Retrieved from Breast cancer (female): http://www.nhs.uk/Conditions/Cancer-of-the-breast-female/Pages/Introduction.aspx NHS Breast Screening Programme. (2000). QUALITY ASSURANCE GUIDELINES. Retrieved from http://www.cancerscreening.nhs.uk: http://www.cancerscreening.nhs.uk/breastscreen/publications/nhsbsp30.pdf NHSBSP. (2006). ACCEPTABILITY TO WOMEN OF FULL FIELD DIRECT DIGITAL MAMMOGRAPHY. Retrieved from http://www.cancerscreening.nhs.uk/: http://www.cancerscreening.nhs.uk/breastscreen/publications/nhsbsp-equipment-report-0603.pdf Nicholson, B. T., LoRusso, A. P., Smolkin, M., Bovbjerg, V. E., Petroni, G. R., & Harvey, J. A. (2006). Accuracy of assigned BI-RADS breast density category definitions. Acad Radiol, 1143-1149. Noel, A., & Thibault, F. (2004). Digital detectors for mammography: the technical challenges. European Radiology, 1990–1998. O’Leary, D., & Al Maskari, M. Z. (2013). Pain in mammography: where and why does it arise? BREAST CANCER RESEARCH, 15. Oberhofer, N., & Bolzano. (2011). Comparison of new digital mammography systems: physical characterisation and image quality evaluation. ECR , (pp. 1-22). Oberhofer, N., Fracchetti, A., Nassivera, E., Valentini, A., & Moroder, E. (2010). Comparison of Two Novel FFDM Systems with Different a-Se Detector Technology: Physical Characterization and Phantom Contrast Detail Evaluation in Clinical Conditions. Digital Mammography, 6136, 459-466. Obuchowski, N. A. (2004, April). How Many Observers Are Needed in Clinical Studies of Medical Imaging? American Journal of Roentgenology, 182(4), 867-869. O'Leary, D., Grant, T., & Rainford, L. (2011). Image quality and compression force: the forgotten link in optimisation of digital mammography? Breast Cancer Research, 13 Suppl 1, 10. Oliveira, L. J., & Lança, C. (2011, March). Radiological imaging in digital systems: the effect of exposure parameters in diagnostic quality and patient dose. Retrieved August 26, 2014, from Universidade de Aveiro - RIA Statistics: http://hdl.handle.net/10773/3950 Otani, T. (2013, April 4). New Compression Paddle Reduces Pain in Mammography. Retrieved January 15, 2014, from http://techon.nikkeibp.co.jp: http://techon.nikkeibp.co.jp/english/NEWS_EN/20130404/274926/ Pan, X., Sidky, E. Y., & Vannier, M. (2009). Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction? Inverse problems, 25(12). Paredes, E. S. (2007). Atlas of mammography (Third ed.). Lippincott Williams & Wilkins. Patete, P., Iacono, M. I., Spadea, M. F., Trecate, G., Vergnaghi, D., Mainardi, L. T., et al. (2013). A multi-tissue mass-spring model for computer assisted breast surgery. Med Eng Phys, 47-53. Peppas, N. A. (1976). Crystallization of polyvinyl alcohol-water films by slow dehydration. European Polymer Journal, 495–498. Peppas, N. A., & Scott, J. E. (1992). Journal of Controlled Release. Controlled release from poly ( vinyl alcohol ) gels prepared by freezing-thawing processes, 18(2), 95-100. Peppas, N. A., & Stauffer, S. R. (1991). Reinforced uncrosslinked poly (vinyl alcohol) gels produced by cyclic freezing-thawing processes: a short review. Journal of Controlled Release, 305-310. Perry, N., Broeders, M., De Wolf, C., Törnberg, S., Holland, R., & Von Karsa, L. (2013). European guidelines for quality assurance in breast cancer screening and diagnosis - Fourth edition - Supplements. Philips. (1999). Back to CT basics: Why 100 kVp? Retrieved from http://clinical.netforum.healthcare.philips.com/: http://clinical.netforum.healthcare.philips.com/global/Explore/White-Papers/CT/Back-to-CT-basics-Why-100-kVp- Pisano, E. D., & Yaffe, M. J. (2005). Digital Mammography. Radiology, 353–362. Pisano, E. D., Hendrick, R. E., Yaffe, M. J., Baum, J. K., Acharyya, S., B., C. J., et al. (2008). Diagnostic Accuracy of Digital versus Film Mammography: Exploratory Analysis of Selected Population Subgroups in DMIST. Radiology, 246(2), 376–383. Pope, T. L., Read, M. E., Medsker, T., Buschi, A. J., & Brenbridge, A. N. (1984). Breast skin thickness: normal range and causes of thickening shown on film-screen mammography. J Can Assoc Radiol, 365-368. Poulos, A., & McLean, D. (2004). The application of breast compression in mammography: a new perspective. Radiology, 131–137. Poulos, A., McLean, D., Rickard, M., & Heard, R. (2003). Breast compression in mammography: how much is enough? Australas Radiol, 121-126. Price, B. D., Gibson, A. P., Tan, L. T., & Royle, G. J. (2010). An elastically compressible phantom material with mechanical and x-ray attenuation properties equivalent to breast tissue. Physics in Medicine and Biology, 55, 1177-1188. Prionas, N. D., Lindfors, K. K., Ray, S., Huang, S.-Y., Beckett, L. A., Monsky, W. L., et al. (2010). Contrast-enhanced Dedicated Breast CT: Initial Clinical Experience. Radiology, 256(3), 714-723. Public Health England. (2014). NHS Breast Cancer Screening Programme. Retrieved July 21, 2014, from http://cancerscreening.nhs.uk/: http://cancerscreening.nhs.uk/breastscreen/digital-mammography.html Puretec Industrial Water. (2012). Is It Safe To Drink Deionized Water. Retrieved August 3, 2014, from http://puretecwater.com: http://puretecwater.com/safe-to-drink-deionized-water.html Qureshi, G. U., & Samera, A. (2009). Mammographic density – a useful biomarker for breast cancer risk in epidemiologic studies. Norsk Epidemiologi, 59-68. Rajendran, P. T., Krishnapillai, V., Tamanang, S., & Chelliah, K. K. (2012). Comparison of Image Quality Criteria between Digital Storage Phosphor Plate in Mammography and Full-Field Digital Mammography in the Detection of Breast Cancer. Malaysian Journal of Medical Sciences, 19(1), 52–59. Ranger, N. T., Lo, J. Y., & Samei, E. (2010). A technique optimization protocol and the potential for dose reduction in digital mammography. Medical Physics, 37(3), 962–969. Ricchiardi, R., Auriemma, F., & de Rosa, C. (2005). Structure and Properties of Poly(vinyl alcohol) Hydrogels obtained by Freeze/Thaw techniques. Macromol. Symp, 49-63. Robson, K. J. (2010). Advances in mammographic imaging. The British Journal of Radiology, 83(988), 273-275. Rossmann, K. (1969). Point spread-function, line spread-function, and modulation transfer function: tools for the study of imaging. Radiology, 257-272. Ruiter, N. V., Stotzka, R., Gemmeke, H., Reichenbach, J., & Kaiser, W. (2002). Automatic image matching for breast cancer diagnostics by a 3d deformation of the mamma. Biomed. Tech, 644–647. Ru-yin, M., & Dang-sheng, X. (2008). Synthesis and properties of physically crosslinked poly (vinyl alcohol) hydrogels. Journal of China University of Mining and Technology, 18(2), 271-274. Sabih, D.-e., Sabih, A., Sabih, Q., & Khan, A. N. (2011). Image perception and interpretation of abnormalities; can we believe our eyes? Can we do something about it? Insights into Imaging, 2(1), 47-55. Saha, G. B. (2013). Physics and Radiobiology of Nuclear Medicine. Springer. Samani, A., & Plewes, D. (2004). A method to measure the hyperelastic parameters of ex vivo breast tissue samples. Phys. Med. Biol, 49, 4395–4405. Samani, A., Bishop, J., Yaffe, M. J., & Plewes, D. B. (2001). Biomechanical 3-D finite element modeling of the human breast using MRI data. Medical Imaging, IEEE Transactions on, 20, 271 - 279. Samani, A., Zubovits, J., & Plewes, D. (2007). Elastic moduli of normal and pathological human breast tissues: an inversion-technique-based investigation of 169 samples. Physics in Medicine and Biology, 52(6), 1565-1576. Samei, E. (2003). Performance of Digital Radiographic Detectors: Quantification and Assessment methods. RSNA, 37-47. Samei, E., & Krupinski, E. (2010). Medical image perception. In E. Samei, & E. Krupinski (Eds.), The Handbook of Medical Image Perception and Techniques (pp. 1-6). Cambridge: Cambridge University Press. Samei, E., & Li, X. (2010). Logistical issues in designing perception experiments. In E. Samei, & E. Krupinski (Eds.), The handbook of Medical Image Perception and Techniques (pp. 177-186). Cambridge, England: Cambridge University Press. Samei, E., Dobbins III, J. T., Lo, J. Y., & Tornai, M. P. (2005). Radiology Protection Dosimetry, 220-229. Sardanelli, F., Zandrino, F., Imperiale, A., Bonaldo, E., Quartini, M. G., & Cogorno, N. (2000). Breast Biphasic Compression versus Standard Monophasic Compression in X-ray Mammography. Radiology, 217(2). Sarvazyan, A. (1993). Shear acoustic properties of soft biological tissues in medical diagnostics. The Journal of the Acoustical Society of America, 93(4), 2329-2330. Saunders, R. S., & Samei, E. (2008). The effect of breast compression on mass conspicuity in digital mammography. Medical Physics, 4464-4473. Schaefer-Prokop, C., & Prokop, M. (1997, March). Digital radiography of the chest: Comparison of the selenium detector with other imaging systems. Medicamundi, 41(1). Sechopoulos, L. (2014). Patient dose. In S. G. Ingrid Reiser, Tomosynthesis Imaging (p. 52). CRS Press. Segars, P., & Tsui, B. M. (2009). MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research. Proceedings of the IEEE, 97, 1954-1968. Silva, F. A., Souza, L. F., Salmon, C. E., & Souza, D. N. (2010, August 23). Breast phantom with silicone implant for evaluation in conventional mammography. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 12(1). Skaane, P., Hofvind, S., & Skjennald, A. (2007). Randomized trial of screen-film versus full-field digital mammography with soft-copy reading in population-based screening program: follow-up and final results of Oslo II study. Radiology, 708-717. Smith, A. (2003). Fundamentals of Digital Mammography: Physics, Technology and Practical Considerations. Retrieved from http://lraxray.com/: http://lraxray.com/Media/Fundamentals%20of%20DM.pdf Smith, A. (2008). Fundamentals of Breast Tomosynthesis. Retrieved from http://www.hologic.com/: http://www.hologic.com/sites/default/files/Fundamentals%20of%20Breast%20Tomosynthesis_WP-00007.pdf Smith, A. (2014). The Principles of Contrast Mammography. Retrieved from http://www.hologic.com: http://www.hologic.com/sites/default/files/Principles%20of%20Contrast.pdf Smith, N. B., & Webb, A. (2010). Introduction to Medical Imaging Physics, Engineering and Clinical Applications. Cambridge university press. Smith, S. W. (1997). Special Imaging Techniques. In S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing. California technical. Sprawls, P. (1995). http://www.sprawls.org. Retrieved from Mammography Physics and Technology for effective clinical imaging: http://www.sprawls.org/resources/MAMMO/module.htm#12 Sprawls, P. (1995). Image Noise. Retrieved 7 23, 2014, from http://www.sprawls.org: http://www.sprawls.org/ppmi2/NOISE/ Sprawls, P. (1995). Iodine and Barium Contrast Media. Retrieved September 22, 2014, from http://www.sprawls.org/: http://www.sprawls.org/ppmi2/XRAYCON/#Iodine and Barium Contrast Media Sprawls, P. (1995). Radiation Quantities and Units. Retrieved 7 23, 2014, from http://www.sprawls.org: http://www.sprawls.org/resources/RADQU/#Air KERMA Stangl, E. (2013, September 29). Theory and Practice of Trying to Combine Just Anything. Retrieved 1 15, 2014, from http://elkement.wordpress.com: http://elkement.wordpress.com/2013/09/29/may-the-force-field-be-with-you-primer-on-quantum-mechanics-and-why-we-need-quantum-field-theory/ Stauffer, S. R., & Peppas, N. A. (1992). Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing. Polymer, 33(18), 3932 - 3936. Stewart, M. L., Smith, L. M., & Hall, N. (2011). A numerical investigation of breast compression: a computer-aided design approach for prescribing boundary conditions. IEEE Trans Biomed Eng, 58(10), 2876-2884. Surry, K. J., & Peters, T. M. (2001). A PVA-C Brain Phantom Derived from a High Quality 3D MR Data Set. Lecture Notes in Computer Science, 2208/2001, 1149-1150. Surry, K. J., Austin, H. J., Fenster, A., & Peters, T. M. (2004). Poly(vinyl alcohol), cryogel phantoms for use in ultrasound and MR imaging. Physics in Medicine and Biology, 49, 5529-5546. Suryanarayanan, S., Karellas, A., Vedantham, S., Ved, H., Baker, S., & D'Orsi, C. (2002). Flat-panel digital mammography system: contrast-detail comparison between screen-film radiographs and hard-copy images. Radiology, 801-807. Svahn, T. M., & Tingberg, A. (2014). Observer experiments with tomosynthesis. In S. G. Ingrid Reiser, Tomosynthesis Imaging (pp. 161-163). CRC Press. Tanner, C., Hipwell, J. H., & Hawkes, D. J. (2008). Statistical Deformation Models of Breast Compressions from Biomechanical Simulations. Lecture Notes in Computer Science, 5116, 426-432. Tanner, C., Schnabel, J., Smith, A. C., Sonoda, L., Hill, D., & Hawkes, D. (2002). The Comparison of Biomechanical Breast Models: Initial Results. The Collaboration for NDT Education. (2012). Transmitted Intensity and Linear Attenuation Coefficient. (Iowa State University) Retrieved August 26, 2014, from http://www.ndt-ed.org: http://www.ndt-ed.org/EducationResources/CommunityCollege/Radiography/Physics/attenuationCoef.htm Thomas, S. J. (1999). Relative electron density calibration of the CT scanners for radiotherapy treatment planning. The British journal of Radiology, 72, 781-786. Toennies, K. D. (2012). Guide to Medical Image Analysis: Methods and Algorithms. Springer. Tourassi, G. (2010). Receiver operating characteristic analysis: basic concepts and practical aplicatons. In E. K. Ehsan Samei, The handbook of Medical Image Perception and Techniques (p. 167). Tugwell, J., Everton, C., Kingma, A., Oomkens, D., Pereira, G., Pimentinha, D., et al. (2014). Increasing source to image distance for AP pelvis imaging – Impact on radiation dose and image quality. Radiology. University of Guelph. (2002, August 29). Standard Operating Procedures for Using Ethanol (Ethyl Alcohol 95%) at Laminar Flow Benches. Retrieved August 16, 2012, from http://www.uoguelph.ca/plant/resource/pdf_sops/Ethanol_procedure.pdf University of Texas. (2014). High-resolution X-ray CT. Retrieved from http://www.ctlab.geo.utexas.edu/: http://www.ctlab.geo.utexas.edu/overview/ University of the West of England. (2010). X-ray contrast media made clear. Retrieved September 22, 2014, from http://hsc.uwe.ac.uk/: http://hsc.uwe.ac.uk/idis2/contrast_agents/cm%20zip/contrastmedia_schering.pdf Unlu, M. Z., Krol, A., Coman, I. L., Mandel, J. A., Baum, K. G., Lee, W., et al. (2005). Deformable model for 3D intramodal nonrigid breast image registration with fiducial skin markers. Medical Imaging, 5747, 1528-1534. Upstate medical university. (2011). CT Radiographic Techniques. Retrieved from http://www.upstate.edu: http://www.upstate.edu/radiology/education/rsna/ct/technique/ Varjonen, M., Pamilo, M., Hokka, P., Hokkanen, R., & Strömmer, P. (2007). Breast positioning system for full field digital mammography and digital breast tomosynthesis system. SPIE medical imaging. Veenland, J. F., Grashuis, J. L., van der Meer, F., Beckers, A. L., & Gelsema, E. S. (1996). Estimation of fractal dimension in radiographs. Medical Physics, 23(4), 585–594. Verlet, L. (1967). Computer experiments on classical fluids. Phys Rev, 159, 98–103. Vigeland, E., Klaasen, H., Klingen, T. A., Hofvind, S., & Skaane, P. (2008). Full-field digital mammography compared to screen film mammography in the prevalent round of a population-based screening programme: the Vestfold County Study. Eur Radiol, 183-191. Wan, W. K., Campbell, G., Zhang, Z. F., Hui, A. J., & Boughner, D. R. (2002, February 27). Optimizing the Tensile Properties of Polyvinyl Alcohol Hydrogel for the Construction of a Bioprosthetic Heart Valve Stent. Wiley Periodicals, Inc., pp. 854-861. Wang, C.-L., Wang, C.-M., Chan, Y.-K., Wang, S., & Liou, M.-R. (2011). Image Quality Fig. Evaluator Used in Radiography Based on Contrast-Detail Phantom. IEEE 3rd International Conference, 431-435. Wang, Y., Xiong, Y., & Xu, K. (2006). A Mass-Spring Model for Surface Mesh Deformation Based on Shape Matching. GRAPHITE '06, 375-380. Weisstein, E. W. (2013, July 29). Full Width at Half Maximum. Retrieved August 19, 2014, from http://mathworld.wolfram.com/: http://mathworld.wolfram.com/FullWidthatHalfMaximum.html Wellman, P. S. (1999). Tactile Imaging. PhD Thesis. Harvard. Whitman, G. J., & Haygood, T. M. (2013). Digital Mammography: A Practical Approach. (G. J. Whitman, & T. M. Haygood, Eds.) Cambridge, England: Cambridge University Press. Willcox, P. J., Howie, D. W., Schmidt-Rohr, K., Hoagland, D. A., Gido, S. P., Pudjijanto, S., et al. (1999). Microstructure of Poly(vinyl alcohol) Hydrogels Produced by Freeze/Thaw Cycling. Journal of Polymer Science, 3438–3454. Williams, M. B., Krupinski, E. A., Strauss, K. J., III, W. K., Rzeszotarski, M. S., Applegate, K., et al. (2007). Digital Radiography Image Quality: Image Acquisition. American College of Radiology, 371-388. Winchester, D. P., & Winchester, D. J. (2006). Breast Cancer (Second ed.). Hamilton, Ontario: BC Decker. Wolfe, J. N. (1976). Breast patterns as an index of risk for developing breast cancer. AJR, 1130-1137. Wu, B., Heidelberg, A., & Boland, J. J. (2005). Mechanical properties of ultrahigh-strength gold nanowires. Nature Materials, 4(7), 525 - 529. Yaffe, M. J. (2008). Mammographic density. Measurement of mammographic density. Breast Cancer Research, 209. Yaffe, M. J. (2010). Basic Physics of Digital Mammography. In U. Bick, & F. Diekmann, Digital Mammography (pp. 1-12). London: Springer. Yaffe, M. J. (2010). Detectors for Digital Mammography. In U. Bick, & F. Diekmann, Digital Mammography (pp. 13-32). Londoon: Springer. Yaffe, M. J. (2010). Detectors for Digital Mammography. In U. Bick, & F. Diekmann, Digital Mammography. Springer. Yaffe, M. J., & Mainprize, J. G. (2011). Risk of radiation-induced breast cancer from mammographic screening. Radiology, 98-105. Yan, Z., Gu, L., Huang, P., Lv, S., Yu, X., & Kong, X. (2007). Soft Tissue Deformation Simulation in Virtual Surgery using Nonlinear Finite Element Method. Yang, K., Burkett Jr, G., & Boone, J. (2014). A breast-specific, negligible-dose scatter correction technique for dedicated cone beam breast CT: a physics-based approach to improve Hounsfield Unit accuracy. Physics in medicine and biology, 59(21), 6487–6505. Yip, W. M., Pang, S. Y., Yim, W. S., & Kwok, C. S. (2001). ROC curve analysis of lesion detectability on phantoms: comparison of digital spot mammography with conventional spot mammography. Br J Radiol. Yu, P. (2000, November 27). Anatomy of the Breast. Retrieved 08 19, 2014, from http://ylb1.bol.ucla.edu: http://ylb1.bol.ucla.edu/anatomy.htm Zhang, D., Li, X., & Liua, B. (2012). X-ray spectral measurements for tungsten-anode from 20 to 49 kVp on a digital breast tomosynthesis system. Medical physics, 39(6), 3493-3500. Zhang, J., Roa, D., Sehga, V. l., He, Q., & Al-Ghazi, M. (2011). Comprehensive clinical implementation of a 16-slice Brilliance Big Bore CT Simulator in a radiation oncology department. MedicaMundi, 55(1). Zhang, S., Gu, L., Liang, W., Zhang, J., & Qian, F. (2006). Real-Time Virtual Surgery Simulation Employing MM-Model and Adaptive Spatial Hash. Lecture Notes in Computer Science, 666-675. Zuley, M. L. (2010). Perceptual issues in reading mammograms. In E. K. Ehsan Samei, The Handbook of Medical Image Perception and Techniques (pp. 364-379). Cambridge: Cambridge University Press. Zuley, M. L., Willison, K. M., Bonaccio, E., Miller, D. P., Leong, D. L., Seifert, P. J., et al. (2006). Full-Field Digital Mammography on LCD Versus CRT Monitors. American Journal of Roentgenology, 1492-1498.
Projects : Design, development and use of a deformable breast phantom to assess the relationship between thickness and lesion visibility in full field digital mammography

Files






Downloadable Citations