Dr Stephen Pearson S.Pearson@salford.ac.uk
Senior Lecturer
A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy
Pearson, SJ; Hussain, SR
Authors
SR Hussain
Abstract
It has traditionally been believed that resistance training can only induce muscle growth when the exercise intensity is greater than 65% of the 1-repetition maximum (RM). However, more recently, the use of low-intensity resistance exercise with blood-flow restriction (BFR) has challenged this theory and consistently shown that hypertrophic adaptations can be induced with much lower exercise intensities (<50% 1-RM). Despite the potent hypertrophic effects of BFR resistance training being demonstrated by numerous studies, the underlying mechanisms responsible for such effects are not well defined. Metabolic stress has been suggested to be a primary factor responsible, and this is theorised to activate numerous other mechanisms, all of which are thought to induce muscle growth via autocrine and/or paracrine actions. However, it is noteworthy that some of these mechanisms do not appear to be mediated to any great extent by metabolic stress but rather by mechanical tension (another primary factor of muscle hypertrophy). Given that the level of mechanical tension is typically low with BFR resistance exercise (<50% 1-RM), one may question the magnitude of involvement of these mechanisms aligned to the adaptations reported with BFR resistance training. However, despite the low level of mechanical tension, it is plausible that the effects induced by the primary factors (mechanical tension and metabolic stress) are, in fact, additive, which ultimately contributes to the adaptations seen with BFR resistance training. Exercise-induced mechanical tension and metabolic stress are theorised to signal a number of mechanisms for the induction of muscle growth, including increased fast-twitch fibre recruitment, mechanotransduction, muscle damage, systemic and localised hormone production, cell swelling, and the production of reactive oxygen species and its variants, including nitric oxide and heat shock proteins. However, the relative extent to which these specific mechanisms are induced by the primary factors with BFR resistance exercise, as well as their magnitude of involvement in BFR resistance training-induced muscle hypertrophy, requires further exploration.
Citation
Pearson, S., & Hussain, S. (2015). A review on the mechanisms of blood-flow restriction resistance training-induced muscle hypertrophy. Sports Medicine, 45(2), 187-200. https://doi.org/10.1007/s40279-014-0264-9
Journal Article Type | Article |
---|---|
Publication Date | Feb 1, 2015 |
Deposit Date | Jun 12, 2015 |
Journal | Sports Medicine |
Print ISSN | 0112-1642 |
Electronic ISSN | 1179-2035 |
Publisher | Springer Verlag |
Peer Reviewed | Peer Reviewed |
Volume | 45 |
Issue | 2 |
Pages | 187-200 |
DOI | https://doi.org/10.1007/s40279-014-0264-9 |
Publisher URL | http://dx.doi.org/10.1007/s40279-014-0264-9 |
Related Public URLs | http://link.springer.com/journal/40279 |
You might also like
Reliability of human achilles tendon stiffness measures using freehand 3-D ultrasound
(2021)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search