P Chamorro-Posada
Exact soliton solutions of the nonlinear Helmholtz equation: communication
Chamorro-Posada, P; McDonald, GS; New, GHC
Abstract
Exact analytical soliton solutions of the nonlinear Helmholtz equation are reported. A lucid generalization of paraxial soliton theory that incorporates nonparaxial effects is found.
Citation
Chamorro-Posada, P., McDonald, G., & New, G. (2002). Exact soliton solutions of the nonlinear Helmholtz equation: communication. Journal of the Optical Society of America B, 19(5), 1216-1217. https://doi.org/10.1364/JOSAB.19.001216
Journal Article Type | Article |
---|---|
Publication Date | May 1, 2002 |
Deposit Date | Oct 14, 2011 |
Publicly Available Date | Apr 5, 2016 |
Journal | Journal of the Optical Society of America B |
Print ISSN | 0740-3224 |
Publisher | Optical Society of America |
Peer Reviewed | Peer Reviewed |
Volume | 19 |
Issue | 5 |
Pages | 1216-1217 |
DOI | https://doi.org/10.1364/JOSAB.19.001216 |
Publisher URL | http://dx.doi.org/10.1364/JOSAB.19.001216 |
Files
27_J_Opt_Soc_Am_B_19_1216_2002.pdf
(102 Kb)
PDF
You might also like
Spontaneous spatial fractal pattern formation in dispersive systems
(2017)
Journal Article
Diffraction of Weierstrass scalar fractal waves by circular apertures : symmetry and patterns, complexity and dimension
(2015)
Presentation / Conference
Unstable resonators with polygon and von Koch-type boundary conditions : virtual source modelling of fractal eigenmodes
(2015)
Presentation / Conference
Nonlinear Helmholtz wave refraction & Goos-Hänchen shifts in nonparaxial optics : angles and interfaces, solitons and Snell's law
(2015)
Presentation / Conference