JS Cowpe
Optical Emission and Mass Spectrometric Diagnostics of Laser-Induced Silicon Plasmas
Cowpe, JS
Authors
Contributors
RD Pilkington R.D.Pilkington@salford.ac.uk
Supervisor
Abstract
Optical Emission Spectroscopy (OES) and Mass Spectrometry (MS) were employed in tandem for diagnostic studies of Nd:YAG (532 nm) laser induced plasma plumes. OES measurements of laser-induced silicon plasmas were performed through a range of ambient pressure regimes from atmospheric pressure down to ~10-4 mbar. The temporal evolution of the plasmas was characterised in terms of electron excitation temperature Te, ionisation temperature Ti, and electron density Ne. Electron densities were determined in the range 2.86 × 1016 to 5.53 × 1019 cm-3, electron temperatures were calculated in the range 8794 to 21229 K, and ionic species temperatures calculated in the range 13658 to 22551K. The requirements for OES analysis based on the assumption of Local Thermal Equilibrium (LTE) conditions existing within the plasmas are discussed. The plasma morphology and expansion dynamics with respect to pressure are described.
Response Surface Methodology (RSM) was employed to optimise Laser-Induced Breakdown Spectroscopy (LIBS) analyses of silicon at atmospheric pressure and under vacuum conditions. Multivariate analysis software was used to design and analyse several multi-level, full factorial RSM experiments. A Quality Factor (QF) was conceived as the response parameter for the experiments, representing the quality of the LIBS spectrum captured for a given hardware configuration. A full parametric study of the LIBS hardware configuration was performed to determine the true response of the system; the outcome of which compares favourably with the results yielded from the RSM investigation.
MS analyses of silicon and copper laser-induced plasma plumes were performed using a commercially available Residual Gas Analyser (RGA). The RGA sampling configuration was investigated in order to maximise neutral and ionic species detection from the laser-induced plasmas.
Citation
Cowpe, J. Optical Emission and Mass Spectrometric Diagnostics of Laser-Induced Silicon Plasmas. (Thesis). University of Salford
Thesis Type | Thesis |
---|---|
Deposit Date | Nov 26, 2009 |
Publicly Available Date | Nov 26, 2009 |
Keywords | LIBS, laser-induced breakdown spectroscopy, plasma diagnostic techniques, ambient pressure |
Additional Information | References : Abraham E.R.I., Cornell E.A. ‘Teflon feed-through for coupling optical fibers into ultrahigh vacuum systems’ Applied Optics 37 (1998) 1762-3. Acquaviva S., De Giorgi M.L., Marini C., Poso R. ‘A support of restoration intervention of the bust of St. Gregory the Armenian: Compositional investigations by laser-induced breakdown spectroscopy’ Applied Surface Science (2005) 248, 218-223. Alexander M.L., Smith M.R., Hartman J.S., Mendoza A., Koppenaal D.W. ‘Laser ablation inductively coupled plasma mass spectrometry’ Applied Surface Science (1998) 127, 225-261. Almirall J.R., Umpierrez S., Castro W., Gornushkin I., Winefordner J. ‘Forensic elemental analysis of materials by laser-induced breakdown spectroscopy’ Sensors (2005) 4, 657-666. Amador-Hernández J., Fernández-Romero J.M., Luque de Castro M.D. ‘Three-dimensional analysis of screen-printed electrodes by laser induced breakdown spectrometry and pattern recognition’ Analytica Chimica Acta (2001) 435, 227–238. Amoruso S., Bruzzese R., Spinelli N., Velotta R. ‘Characterization of laser-ablation plasmas’ Journal of Physics B: At. Mol. Opt. Phys. (1999) 32, R131-R172. Angeletti R., Giacchini A.M., Seraglia R., Piro R., Traldi P. ‘The Potential of Matrix-assisted Laser Desorption/Ionisation Mass Spectrometry in the Quality Control of Water Buffalo Mozzarella Cheese’ Journal of Mass Spectrometry (1998) 33, 525-531. Applied Physics Laboratory, The John Hopkins University ‘A portable Universal Sensor: The Miniature Mass Spectrometer’, promotional literature, (2006). Arp Z.A., Cremers D.A., Harris R.D., Oschwald D.M., Parker Jr. G.R., Wayne D.M. ‘Feasibility of generating a useful laser-induced breakdown spectroscopy plasma on rocks at high pressure: preliminary study for a Venus mission’ Spectrochimica Acta Part B (2004) 59, 987-999. Asimellis G., Giannoudakos A., Kompitsas M. ‘Phosphate ore beneficiation via determination of phosphorus-to-silica ratios by Laser Induced Breakdown Spectroscopy’ Spectrochimica Acta Part B (2006) 61, 1253–1259. Badman E.R.; Cooks R.G. ‘Special Feature: Perspective – Miniature Mass Analysers’, Journal of Mass Spectrometry (2000) 35, 659-671. Balzer H., Hoehne M., Sturm V., Noll R. ‘Online coating thickness measurement and depth profiling of zinc coated sheet steel by laser-induced breakdown spectroscopy’ Spectrochimica Acta Part B (2005) 60, 1172-1178. Barrette L., Turmel S. ‘On-line iron-ore slurry monitoring for real-time process control of pellet making processes using laser-induced breakdown spectroscopy: graphitic vs. total carbon detection’ Spectrochimica Acta Part B (2001) 56, 715-723. Bas D., Boyacı I.H. ‘Modelling and optimisation I: Usability of response surface methodology’ Journal of Food Engineering (2007) 78, 836-845. Becker J.S. ‘Applications of inductively coupled plasma mass spectrometry and laser ablation inductively coupled mass spectrometry in materials science’ Spectrochimica Acta Part B (2002) 57, 1805-8120. Belloto R.J., Dean A.M., Moustafa M.A., Molokhia A.M., Gouda M.W., Sokoloski T.D. ‘Statistical techniques applied to solubility predictions and pharmaceutical formulations: an approach to problem solving using mixture response surface methodology’ International Journal of Pharmaceutics (1985) 23, 195-207. Bennett J.R.J., Hughes S., Elsey R.J., Parry T.P. ‘Outgassing from stainless steel and the effects of the gauges’ Vacuum (2004) 73, 149–153. Benyounis K.Y., Olabi A.G., Hashmi M.S.J. ‘Effect of laser welding parameters on the heat input and weld-bead profile’ Journal of Materials Processing Technology (2005) 164-165, 978-985. Bi M., Ruiz A.M., Gornushkin I., Smith B.W., Winefordner J. D. ‘Profiling of patterned metal layers by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS)’ Applied Surface Science (2000) 158, 197-204. Blain M.G., Riter L.S., Cruz, D., Austin, D.E., Wu G., Plass W.R., Cooks R.G. ‘Towards the hand-held mass spectrometer: design considerations, simulation, and fabrication of micrometer-scaled cylindrical ion traps’, International Journal of Mass Spectrometry (2004) 236, 91-104. Bleakney W. ‘A new method of positive ray analysis and its application to the measurement of ionization potentials in mercury vapor’ Physical Review (1929) 34, 157-161. Bogue R. ‘LIBS range extended through the use of a transportable terawatt laser system’ Sensor Review (2005) 25, 105-108. Boué-Bigne F. ‘Analysis of Oxide Inclusions in Steel by Fast Laser-Induced Breakdown Spectroscopy Scanning: An Approach to Quantification’ Applied Spectroscopy (2007) 61, 333-337. Boumsellek, S., Ferran, R.J. ‘Trade offs in Miniature Quadrupole Design’, Journal of the American Society for Mass Spectrometry (2001) 12, 633-640. Box G.E.P., Wilson K.B. ‘Experimental attainment of optimum conditions’ Journal of the Royal Statistical Society (1951) 13, 1-45. Brech F., Cross L. ‘Optical microemission stimulated by a ruby laser’ Applied Spectroscopy (1962) 16, 59. Bredice F., Sorbal H., Villagran-Muniz M., Di Rocco H.O., Cristoforetti G., Legnaioli S., Palleschi V., Sa ;vetti A., Tognoni E. ‘Real time measurement of the electron density of a laser generated plasma using a RC circuit’ Spectrochimica Acta Part B (2007) 83, 836-840. Brysbaert A., Melessanaki K., Anglos D. ‘Pigment analysis in Bronze Age Aegean and Eastern Mediterranean painted plaster by laser-induced breakdown spectroscopy (LIBS)’ Journal of Archaeological Science (2006) 33, 1095-1104. Budzikiewicz H., Grigsby D. ‘Mass spectrometry and isotopes: a century of research and discussion’ Mass Spectrometry Reviews (2006) 25, 146-157. Bugoi R., Constantinescu B., Neelmeijer C., Constantin F. ‘The potential of external IBA and LA-ICP-MS for obsidian elemental characterization’ Nuclear Instruments and Methods in Physics Research Section B (2004) 226, 136-146. Bulajic D., Corsi M., Cristoferetti G., Legnaioli S., Palleschi V., Salvetti A., Tognoni E. ‘A procedure for correcting self absorption in calibration free-laser induced breakdown spectroscopy’ Spectrochimica Acta Part B (2002) 57, 339-353. Bustamante M.F., Rinaldi C.A., Ferrero J.C. ‘Laser induced breakdown spectroscopy characterization of Ca in a soil depth profile’ Spectrochimica Acta Part B (2002) 57, 303-309. Cabalin L. M., Romero D., Baena J. M., Laserna J. J. ‘Effect of Surface Topography in the Characterization of Stainless Steel Using Laser-induced Breakdown Spectrometry’ Surface and Interface Analysis (1999) 27, 805–810. Caneve L., Colao F., Fabbri F., Fantoni R., Spizzichino V., Striber J. ‘Laser-induced breakdown spectroscopy analysis of asbestos’ Spectrochimica Acta Part B (2005) 60, 1115 – 1120. Caneve L., Colao F., Sarto F., Spizzichino V., Vadrucci M., ‘Laser-induced breakdown spectroscopy as a diagnostic tool for thin films elemental composition’ Spectrochimica Acta Part B, (2005a) 60, 1098-1102. Carranza J.E., Fisher B.T., Yoder G.D., Hahn D.W. ‘On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy’ Spectrochimica Acta Part B (2001) 56, 851-864. Carmona N., Oujja M., Gaspard S., García-Heras M., Villegas M.A., Castillejo M. ‘Lead determination in glasses by laser-induced breakdown spectroscopy’ Spectrochimica Acta Part B (2007) 62, 94–100. Chambers A., ‘Modern Vacuum Physics’ Chapman and Hall/CRC Press, London, 2005. ISBN 0-8493-2438-6. Charfia B., Harith M.A. ‘Panoramic laser-induced breakdown spectrometry of water’ Spectrochimica Acta Part B (2002) 57, 1141–1153. Chávez-Valencia L.E., Manzano-Ramírez A., Luna-Barcenas G., Alonso-Guzmán E. ‘Modelling of the performance of asphalt pavement using response surface methodology’ Building and Environment (2005) 40, 1140-1149. Choudhury I.A., El-Baradie M.A. ‘Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology’ Journal of Materials Processing Technology (1999) 95, 30-39. Corsi M., Cristoforetti G., Hidalgo M., Legnaioli S., Palleschi V., Salvetti A., Tognoni E., Vallebona C. ‘Application of laser-induced breakdown spectroscopy technique to hair tissue mineral analysis’ Applied Optics (2003) 42, 6133-6138. Cowpe J.S., Pilkington R.D. ‘Swagelok Ultra-Torr based feed-through design for coupling optical fibre bundles into vacuum systems’ Vacuum (2008) 82, 1341-1343. CRC Handbook of Chemistry and Physics, CRC Press Inc., Florida, 1988. Cremers D.A., Radziemski L.J., ‘Handbook of laser-induced breakdown spectroscopy’ John Wiley and Sons Ltd, Chichester, 2006. ISBN 13 978-0-470-09299-6. Cyionics Ltd, ‘IOTA: changing your expectation of RGA instrumentation’, promotional literature, 2006. Debra-Guedon J., Liodec N. ‘De l’utilisation du faisceau d’un amplificateur a ondes lumineuses par emission induite de rayonnement (laser a rubis), comme source energetique pour l’excitation des spectres d’emission des elements’ C.R. Acad. Sci (1963) 257, 3336-3339. de Giacomoa A., Dell’Aglioa M., Colaob F., Fantoni R. ‘Double pulse laser produced plasma on metallic target in seawater: basic aspects and analytical approach’ Spectrochimica Acta Part B (2004) 59, 1431– 1438. de Hoffman E., Stroobant V., ‘Mass Spectrometry: Principles and Applications 2nd Ed’ John Wiley and Sons Ltd., Chichester, 2003. ISBN 0-471-48566-7. de Segovia J.L. ‘A review of electron stimulated desorption processes influencing the measurement of pressure or gas composition in ultra high vacuum systems’ Vacuum (1996) 47, 333-340. de Lucia Jr. F.C., Gottfried J.L., Munson C.A., Miziolek A.W. ‘Double pulse laser-induced breakdown spectroscopy of explosives: Initial study towards improved discrimination’ Spectrochimica Acta Part B (2007) 62, 1399-1404. Diaz J.A., Daley P., Miles R., Rohrs H., Polla D. ‘Integration Test of a miniature ExB mass spectrometer with a gas chromatograph for development of a low-cost, portable, chemical-detection system’, Trends in Analytical Chemistry (2004) 4, 314-322. Dimov S.S., Chryssoulis S.L. ‘Standardization of time-of-flight laser ionization mass spectrometry analysis of minerals’ Spectrochimica Acta Part B (1998) 53, 399-406. Dixon A. ‘RGA for corrosive semiconductor applications’ III-IVs Review (1997) 10, 51. Dockery C.R., Goode S.R. ‘Laser-induced breakdown spectroscopy for the detection of gunshot residues on the hands of a shooter’ Applied Optics (2003) 42, 6153-6159. Elliott R.M. ‘Ion Sources’ in McDowell C.A. (Ed.) Mass Spectrometry, McGraw-Hill Book Company, Inc., New York, 1963, pp. 69-103. El Sherbini A.M., El Sherbini T.M., Hegazy H., Cristoferetti G., Legnaioli S., Palleschi V., Pardini L., Salvetti A., Tognoni E. ‘Evaluation of self-absorption coefficients of aluminium emission lines in laser-induced breakdown spectroscopy measurements’ Spectrochimica Acta Part B (2005) 60, 1573-1579. El Sherbini A.M., Hegazy H., El Sherbini T.M. ‘Measurement of electron density utilizing the Hα-line from laser produced plasma in air’ Spectrochimica Acta Part B (2006) 61, 532-539. Escoubas P., Quinton L., Nicholson G.M. ‘Venomics: unravelling the complexity of animal venoms with mass spectrometry’ Journal of Mass Spectrometry (2008) 43, 279-295. Farmer J.B. ‘Types of Mass Spectrometers’ in McDowell C.A. (Ed.) Mass Spectrometry, McGraw-Hill Book Company, Inc., New York, 1963, pp.7-63. Forsberg J., Nilsson L. ‘Evaluation of response surface methodologies used in crashworthiness optimisation’ International Journal of Impact Engineering (2006) 32, 759-777. Fortes F.J., Cortés M., Simón M.D., Cabalín L.M., Laserna J.J. ‘Chronocultural sorting of archaeological bronze objects using laser-induced breakdown spectrometry’ Analytica Chimica Acta (2005) 554, 136-143. Garcia-Ayuso L.E., Amador-Hernandez J., Fernandez-Romero J.M., Luque de Castro M.D. ‘Characterization [sic] of jewellery products by laser-induced breakdown spectroscopy’ Analytica Chimica Acta (2002) 457, 247-256. Garcia C.C, Vadillo J.M., Palanco S., Ruiz J., Laserna J.J. ‘Comparative analysis of layered materials using laser-induced plasma spectrometry and laser-ionization time-of-flight mass spectrometry’ Spectrochimica Acta Part B (2001) 56, 923-931. Glumac N., Elliott G. ‘The effect of ambient pressure on laser-induced plasmas in air’ Optics and Lasers in Engineering (2007) 45, 27–35. Gondal M.A., Hussain T. ‘Determination of poisonous metals in wastewater collected from paint manufacturing plant using laser-induced breakdown spectroscopy’ Talanta (2007) 71, 73-80. Griem H.R., ‘Plasma Spectroscopy’ McGraw-Hill Inc., New York, 1964, Library of Congress Catalog [sic] Card Number 63-23250. Griem H.R., ‘Principles of Plasma Spectroscopy’ Cambridge Monographs on Plasma Physics 2, Cambridge University Press, 1997. ISBN 0-521-45504-9. Griesser H.J., Kingshott P., McArthur S.L., McLean K.M. Kinsel G.R., Timmons R.B. ‘Review: Surface-MALDI mass spectrometry in biomaterials research’ Biomaterials (2004) 25, 4861–4875. Gruber J., Heitz J., Strasser H., Bauerle D., Ramaseder N. ‘Rapid in-situ analysis of liquid steel by laser-induced breakdown spectroscopy’ Spectrochimica Acta Part B (2001) 56, 685-693. Haglund R.F., Itoh N. ‘Electronic Processes in Laser Ablation of Semiconductors and Insulators’ in Laser Ablation Principles and Applications, Miller J.C. (Ed.), 1994, Springer-Verlag, New York. Häkkänen H., Houni J., Kaski S., Korppi-Tommola J.E.I. ‘Analysis of paper by laser-induced plasma spectroscopy’ Spectrochimica Acta Part B (2001) 56, 737-742. Harilal S.S., Bindhu C.V., Isaac R.C., Nampoori P.N., Vallabhan C.P.G. ‘Electron density and temperature measurements in a laser produced carbon plasma’ Journal of Applied Physics (1997) 82, 2140-2146. Harilal S.S, Bhindu C.V., Tillack M.S., Najmabadi F., Gaeris A.C. ‘Internal structure and expansion dynamics of laser ablation plumes into ambient gases’ Journal of Applied Physics (2003) 93, 2380-2388. Harmon R.S., De Lucia F.C., Miziolek A.W., McNesby K.L., Walters R.A., French P.D. ‘Laser-induced breakdown spectroscopy (LIBS) – an emerging field-portable sensor technology for real-time, in-situ geochemical and environmental analysis’ Applied Geochemsistry (2006) 21, 730-747. Harmon R.S., DeLucia F.C., Winkel R.J., LaPointe A., Grossman S., McNesby K.L., Miziolek A.W. ‘LIBS: a new versatile, field deployable, real-time detector system with potential for landmine detection’ Proceedings of SPIE (2003) 5089, 1065-1077. Henry C.M. ‘Itsy-Bitsy Mass Spectrometers’ Chemical and Engineering News (2002) 80, 34-5. Herbert J.D. ‘Residual Gas Analysis on the Daresbury Synchrotron Light Source’ Vacuum (1996) 48, 755-758. Hiden Analytical ‘Hiden EQP Mass and Energy Analysers for Plasma Diagnostics’ (2007) Technical Information Sheets and Application Notes: 229, 231, 236, 242, 243, 244, 245, 503. Huba J.D. ‘NRL Plasma Formulary’ Plasma Physics Division, Naval Research Laboratory, Washington D.C., 20375. Ingalls A.E., Anderson R.F., Pearson A. ‘Radiocarbon dating of diatom-bound organic compounds’ Marine Chemistry (2004) 92, 91– 105. Kalathenos P., Baranyi J., Sutherland J. P., Roberts T. A. ‘A response surface study on the role of some environmental factors affecting the growth of Saccharomyces cerevisiae’ International Journal of Food Microbiology (1995) 25, 63-74. Kaminska A., Sawczak M., Komar K., Śliwiński G. ‘Application of the laser ablation for conservation of historical paper documents’ Applied Surface Science (2007) 253, 7860-7864. Karellas N.S., Chen Q.F., De Brou G.B., Milburn R.K. ‘Real time air monitoring of hydrogen chloride and chlorine gas during a chemical fire’ Journal of Hazardous Materials (2003) 102, 105–120. Kelly M.C., Gomlak G.G., Panayotov V.G., Cresson C., Rodney J., Koplitz B.D. ‘Energetics of pulsed laser ablation species as determined by quadrupole and time-of-flight mass spectrometry’ Applied Surface Science (1998) 127-129, 988-993. Keszler A.M., Nemes L. ‘Time averaged emission spectra of Nd:YAG laser induced carbon plasmas’ Journal of Molecular Structure (2004) 695, 211-218. Kim T., Specht Z.G., Vary P.S., Lin C.T. ‘Spectral Fingerprints of Bacterial Strains by Laser-Induced Breakdown Spectroscopy’ Journal of Physical Chemistry (2004) 43, 54 |
Award Date | Aug 1, 2008 |
Files
Thesis.pdf
(11.3 Mb)
PDF
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search