Dr Ali Alameer A.Alameer1@salford.ac.uk
Lecturer in Artificial Intelligence
Automatic recognition of feeding and non-nutritive feeding behaviour in pigs using deep learning
Alameer, A; Dalton, H; Kyriazakis, I
Authors
H Dalton
I Kyriazakis
Abstract
Automated vision-based early warning systems have been developed to detect behavioural changes in groups of pigs to monitor their health and welfare status. However, automatic feed detection remains a problem in precision pig farming due to problems of light alteration, occlusions and the similar appearances of pigs. Additionally, these systems often overestimate the actual time spent feeding due to the inability to identify and exclude non-nutritive visits (NNV) to the feeding area. To tackle these problems, we developed a robust feed-detection method that is capable of distinguishing between feeding and NNV to the feeding area for group-housed pigs. Our first objective was to demonstrate the ability of this automated method to identify feeding and NNV behaviour with high accuracy. We then tested the system’s ability to detect a disturbance in group-level feeding and NNV behaviour due to feed restriction. A GoogLeNet deep learning model was utilised as a base network to accurately identify the feeding (i.e., pig has head inside the feeding trough) and NNV (i.e., pig enters the black mat area with two or more feet with one being a front foot) behaviour of group-housed pigs. The method was designed to monitor a predefined pen area covering two feed troughs and a black mat covering the area in front of feeders using a video surveillance camera. The experimental tests showed that our system could recognise the feeding and NNV behaviour of pigs with an accuracy of 99.4%. Following this validation, we tested the method’s ability to detect group level feeding and NNV changes from a normal ad libitum feeding date and a date of quantitive feed restriction. These experiments demonstrate this method is capable of robustly and accurately monitoring the feeding behaviour of groups of pigs under commercial conditions without the need for additional sensors or individual marking.
Citation
Alameer, A., Dalton, H., & Kyriazakis, I. (2019). Automatic recognition of feeding and non-nutritive feeding behaviour in pigs using deep learning. . https://doi.org/10.3920/978-90-8686-890-2
Conference Name | 70th Annual Meeting of the European Federation of Animal Science |
---|---|
Start Date | Aug 26, 2019 |
End Date | Aug 30, 2019 |
Publication Date | Aug 30, 2019 |
Deposit Date | Jun 26, 2023 |
Pages | 713 |
DOI | https://doi.org/10.3920/978-90-8686-890-2 |
You might also like
The Intersection of Generative AI and Healthcare: Addressing Challenges to Enhance Patient Care
(2024)
Conference Proceeding
A Comprehensive Review of AI Techniques for Addressing Algorithmic Bias in Job Hiring
(2024)
Journal Article
Automated detection and quantification of contact behaviour in pigs using deep learning
(2022)
Journal Article
Labeled projective dictionary pair learning: application to handwritten numbers recognition
(2022)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search