Dr Muhammad Hammad Saleem M.H.Saleem@salford.ac.uk
Lecturer in Computer Science (AI)
Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers
Saleem, Muhammad Hammad; Potgieter, Johan; Arif, Khalid Mahmood
Authors
Johan Potgieter
Khalid Mahmood Arif
Abstract
Recently, plant disease classification has been done by various state-of-the-art deep learning (DL) architectures on the publicly available/author generated datasets. This research proposed the deep learning-based comparative evaluation for the classification of plant disease in two steps. Firstly, the best convolutional neural network (CNN) was obtained by conducting a comparative analysis among well-known CNN architectures along with modified and cascaded/hybrid versions of some of the DL models proposed in the recent researches. Secondly, the performance of the best-obtained model was attempted to improve by training through various deep learning optimizers. The comparison between various CNNs was based on performance metrics such as validation accuracy/loss, F1-score, and the required number of epochs. All the selected DL architectures were trained in the PlantVillage dataset which contains 26 different diseases belonging to 14 respective plant species. Keras with TensorFlow backend was used to train deep learning architectures. It is concluded that the Xception architecture trained with the Adam optimizer attained the highest validation accuracy and F1-score of 99.81% and 0.9978 respectively which is comparatively better than the previous approaches and it proves the novelty of the work. Therefore, the method proposed in this research can be applied to other agricultural applications for transparent detection and classification purposes.
Citation
Saleem, M. H., Potgieter, J., & Arif, K. M. (2020). Plant Disease Classification: A Comparative Evaluation of Convolutional Neural Networks and Deep Learning Optimizers. Plants, 9(10), 1319. https://doi.org/10.3390/plants9101319
Journal Article Type | Article |
---|---|
Acceptance Date | Oct 4, 2020 |
Online Publication Date | Oct 6, 2020 |
Publication Date | Oct 6, 2020 |
Deposit Date | Feb 17, 2024 |
Publicly Available Date | Feb 21, 2024 |
Journal | Plants |
Publisher | MDPI |
Peer Reviewed | Peer Reviewed |
Volume | 9 |
Issue | 10 |
Pages | 1319 |
DOI | https://doi.org/10.3390/plants9101319 |
Keywords | Plant Science; Ecology; Ecology, Evolution, Behavior and Systematics |
Files
Published Version
(17.2 Mb)
PDF
Publisher Licence URL
http://creativecommons.org/licenses/by/4.0/
You might also like
Weed Detection by Faster RCNN Model: An Enhanced Anchor Box Approach
(2022)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search