Skip to main content

Research Repository

Advanced Search

Multilayer event‐based distributed control system for DC microgrids with non‐uniform delays and directional communication

Alavi, Seyed Amir; Rahimian, Ardavan; Mehran, Kamyar; Vahidinasab, Vahid

Multilayer event‐based distributed control system for DC microgrids with non‐uniform delays and directional communication Thumbnail


Authors

Seyed Amir Alavi

Ardavan Rahimian

Kamyar Mehran



Abstract

The secondary control layer of microgrids is often modelled as a multi-agent distributed system, coordinated based on consensus protocols. Convergence time of consensus algorithm significantly affects transient stability of microgrids, due to changes in communication topology, switching of distributed generations (DGs), and uncertainty of intermittent energy sources. To minimise convergence time in consensus protocol, this work proposes a multilayer event-based consensus control framework, which is resilient to communication delays and supports plug-and-play (P&P) addition or removal of DGs in DC microgrids of cellular energy systems. A novel bi-layer optimisation algorithm minimises convergence time by selecting an optimal communication topology graph and then adjusts controllers’parameters. Average consensus is achieved among distributed controllers using an event-based consensus protocol, considering non-uniform delays between agents. A realisation method has also been introduced using the directional beamforming technique for topology assignment algorithm based on modern telecommunication technologies. Provided feasibility case study has been implemented on a real-time hardware-in-the-loop (HIL) experimental testbed, to validate the performance of the proposed framework for key purposes of voltage stabilisation and balanced power-sharing in DC microgrids.

Journal Article Type Article
Acceptance Date Aug 19, 2021
Online Publication Date Sep 4, 2021
Publication Date Sep 4, 2021
Deposit Date Feb 23, 2025
Publicly Available Date Feb 25, 2025
Journal IET Generation, Transmission & Distribution
Print ISSN 1751-8687
Electronic ISSN 1751-8695
Publisher Wiley Open Access
Peer Reviewed Peer Reviewed
Volume 16
Issue 2
Pages 267-281
DOI https://doi.org/10.1049/gtd2.12284
Additional Information Received: 2021-02-11; Accepted: 2021-08-19; Published: 2021-09-04

Files





You might also like



Downloadable Citations