Skip to main content

Research Repository

Advanced Search

All Outputs (3)

The strengths and weaknesses of inverted pendulum models of human walking (2014)
Journal Article
McGrath, M., Howard, D., & Baker, R. (2015). The strengths and weaknesses of inverted pendulum models of human walking. Gait & Posture, 41(2), 389-394. https://doi.org/10.1016/j.gaitpost.2014.10.023

An investigation into the kinematic and kinetic predictions of two ‘inverted pendulum’ (IP) models of gait was undertaken. The first model consisted of a single leg, with anthropometrically correct mass and moment of inertia, and a point mass at th... Read More about The strengths and weaknesses of inverted pendulum models of human walking.

Biomechanical analysis of force distribution in human finger extensor mechanisms (2014)
Journal Article
Hu, D., Ren, L., Howard, D., & Zong, C. (2014). Biomechanical analysis of force distribution in human finger extensor mechanisms. BioMed Research International, 2014, 1-9. https://doi.org/10.1155/2014/743460

The complexities of the function and structure of human fingers have long been recognised. The in vivo forces in the human finger tendon network during different activities are critical information for clinical diagnosis, surgical treatment, prosthet... Read More about Biomechanical analysis of force distribution in human finger extensor mechanisms.

Biomechanical analysis of the human finger extensor mechanism during isometric pressing (2014)
Journal Article
Milanese, S., Hu, D., Howard, D., & Ren, L. (2014). Biomechanical analysis of the human finger extensor mechanism during isometric pressing. PLoS ONE, 9(4), e94533. https://doi.org/10.1371/journal.pone.0094533

This study investigated the effects of the finger extensor mechanism on the bone-to-bone contact forces at the interphalangeal and metacarpal joints and also on the forces in the intrinsic and extrinsic muscles during finger pressing. This was done w... Read More about Biomechanical analysis of the human finger extensor mechanism during isometric pressing.