Skip to main content

Research Repository

Advanced Search

All Outputs (357)

Metachronal propulsion of a magnetized particle-fluid suspension in a ciliated channel with heat and mass transfer (2019)
Journal Article
Abdelsalam, S., Bhatti, M., Zeeshan, A., Riaz, A., & Beg, O. (2019). Metachronal propulsion of a magnetized particle-fluid suspension in a ciliated channel with heat and mass transfer. Physica Scripta, 94(11), 115301. https://doi.org/10.1088/1402-4896/ab207a

Biologically inspired pumping systems are of great interest in modern engineering since they achieve enhanced efficiency and circumvent the need for moving parts and maintenance. Industrial applications also often feature two-phase flows. In this ar... Read More about Metachronal propulsion of a magnetized particle-fluid suspension in a ciliated channel with heat and mass transfer.

Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip (2019)
Journal Article
Amirsom, N., Uddin, M., Basir, M., Ismail, A., Beg, O., & Kadir, A. (2019). Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip. Sains malaysiana, 48(5), 1137-1149. https://doi.org/10.17576/jsm-2019-4805-23

A theoretical study is presented for three-dimensional flow of bioconvection nanofluids containing gyrotactic microorganisms over a bi-axial stretching sheet. The effects of anisotropic slip, thermal jump and mass slip are considered in the mathemat... Read More about Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip.

Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with ohmic dissipation (2019)
Journal Article
Kumar, M., Reddy, G., Kumar, N., & Beg, O. (2019). Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with ohmic dissipation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 233(2-4), 49-63. https://doi.org/10.1177/2397791419843730

To provide a deeper insight of the transport phenomena inherent to the manufacturing of magnetic nano-polymer materials, in the present work a mathematical model is developed for time-dependent hydromagnetic rheological nanopolymer boundary layer flo... Read More about Computational study of unsteady couple stress magnetic nanofluid flow from a stretching sheet with ohmic dissipation.

Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube (2019)
Journal Article
Ali, N., Hussain, S., Ullah, K., & Beg, O. (2019). Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube. European Physical Journal Plus, 134(Apr 19), 141. https://doi.org/10.1140/epjp/i2019-12488-2

This article explores analytically the dynamics of two-fluid electro-osmotic peristaltic flow through a cylindrical tube. The rheology of the fluid in the central core (inner region or core region) is captured through the Ellis equation. The region a... Read More about Mathematical modelling of two-fluid electro-osmotic peristaltic pumping of an Ellis fluid in an axisymmetric tube.

Unsteady MHD non-Newtonian (rheological) heat transfer nanofluids with entropy generation analysis (2019)
Journal Article
Shukla, N., Rana, P., & Beg, O. (2019). Unsteady MHD non-Newtonian (rheological) heat transfer nanofluids with entropy generation analysis. Nonlinear Engineering, 8(1), https://doi.org/10.1515/nleng-2017-0177

A theoretical study of unsteady magnetohydrodynamic boundary layer stagnation point flow, heat and mass transfer of a second grade electrically-conducting nanofluid from a horizontal stretching sheet with thermal slip and second order slip velocity e... Read More about Unsteady MHD non-Newtonian (rheological) heat transfer nanofluids with entropy generation analysis.

Bejan flow visualization of free convection in a Jeffrey fluid from a semi-infinite vertical cylinder : influence of Deborah and Prandtl numbers (2019)
Journal Article
Kumar, M., Reddy, G., & Beg, O. (2019). Bejan flow visualization of free convection in a Jeffrey fluid from a semi-infinite vertical cylinder : influence of Deborah and Prandtl numbers. Journal of Thermal Analysis and Calorimetry, 138, 531-543. https://doi.org/10.1007/s10973-019-08099-7

This article studies the pattern of heat lines in free convection non-Newtonian flow from a semi-infinite vertical cylinder via Bejan’s heat function concept. The viscoelastic Jeffrey fluid model is employed. The time-dependent, coupled, non-linear... Read More about Bejan flow visualization of free convection in a Jeffrey fluid from a semi-infinite vertical cylinder : influence of Deborah and Prandtl numbers.

Modeling magnetic nanopolymer flow with induction and nanoparticle solid volume fraction effects : solar magnetic nanopolymer fabrication simulation (2019)
Journal Article
Beg, O., Kuharat, S., Ferdows, M., Das, M., Kadir, A., & Shamshuddin, M. (2019). Modeling magnetic nanopolymer flow with induction and nanoparticle solid volume fraction effects : solar magnetic nanopolymer fabrication simulation. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 233(1), 27-45. https://doi.org/10.1177/2397791419838714

A mathematical model is presented for the nonlinear steady, forced convection, hydromagnetic flow of electro-conductive magnetic nano-polymer with magnetic induction effects included. The transformed two-parameter, non-dimensional governing partial d... Read More about Modeling magnetic nanopolymer flow with induction and nanoparticle solid volume fraction effects : solar magnetic nanopolymer fabrication simulation.

Unsteady free convective heat transfer in third-grade fluid flow from an isothermal vertical plate : a thermodynamic analysis (2019)
Journal Article
Hiremath, A., Reddy, G., Kumar, M., & Beg, O. (2019). Unsteady free convective heat transfer in third-grade fluid flow from an isothermal vertical plate : a thermodynamic analysis. International Journal of Modern Physics B, 33(8), 1950060. https://doi.org/10.1142/S0217979219500607

The current study investigates theoretically and numerically the entropy generation in time-dependent free-convective third-grade viscoelastic fluid convection flow from a vertical plate. The non-dimensional conservation equations for mass, momentum,... Read More about Unsteady free convective heat transfer in third-grade fluid flow from an isothermal vertical plate : a thermodynamic analysis.

Exact thermoelastic analysis of a thick cylindrical functionally graded material shell under unsteady heating using first order shear deformation theory (2019)
Journal Article
Vaziri, S., Ghannad, M., & Beg, O. (2019). Exact thermoelastic analysis of a thick cylindrical functionally graded material shell under unsteady heating using first order shear deformation theory. Heat Transfer - Asian Research, 48(5), 1737-1760. https://doi.org/10.1002/htj.21455

In this article, a new analytical formulation is presented for axisymmetric thick-walled FGM cylinder with power-law variation in mechanical and thermal properties under transient heating using first order shear deformation theory. Equilibrium equati... Read More about Exact thermoelastic analysis of a thick cylindrical functionally graded material shell under unsteady heating using first order shear deformation theory.

Mathematical modelling of ciliary propulsion of an electrically conducting Johnson-Segalman physiological fluid in a channel with slip (2019)
Journal Article
Manzoor, N., Beg, O., Maqbool, K., & Shaheen, S. (2019). Mathematical modelling of ciliary propulsion of an electrically conducting Johnson-Segalman physiological fluid in a channel with slip. Computer Methods in Biomechanics and Biomedical Engineering, 22(7), 685-695. https://doi.org/10.1080/10255842.2019.1582033

Bionic systems frequently feature electromagnetic pumping and offer significant advantages over conventional designs via intelligent bio-inspired properties. Complex wall features observed in nature also provide efficient mechanisms which can be uti... Read More about Mathematical modelling of ciliary propulsion of an electrically conducting Johnson-Segalman physiological fluid in a channel with slip.

Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium (2019)
Journal Article
Bhatti, M., Zeeshan, A., Ellahi, R., Beg, O., & Kadir, A. (2019). Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium. Chinese Journal of Physics, 58(Apr 19), 222-234. https://doi.org/10.1016/j.cjph.2019.02.004

In this article, motivated by more accurate simulation of electromagnetic blood flow in annular vessel geometries in intravascular thrombosis, a mathematical model is developed for elucidating the effects of coagulation (i.e. a blood clot) on perista... Read More about Effects of coagulation on the two-phase peristaltic pumping of magnetized Prandtl biofluid through an endoscopic annular geometry containing a porous medium.

Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation (2019)
Journal Article
Shukla, N., Rana, P., Beg, O., Singh, B., & Kadir, A. (2019). Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation. Propulsion and Power Research, 8(2), 147-162. https://doi.org/10.1016/j.jppr.2019.01.005

Stimulated by thermal optimization in magnetic materials process engineering, the present work investigates theoretically the entropy generation in mixed convection magnetohydrodynamic (MHD) flow of an electrically-conducting nanofluid from a vertica... Read More about Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation.

Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet (2019)
Journal Article
Gupta, D., Kumar, L., Beg, O., & Singh, B. (2019). Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet. AIP conference proceedings, 2061(1), 020024. https://doi.org/10.1063/1.5086646

A numerical study is presented for boundary layer flow and heat transfer of micropolar (non-Newtonian) fluid from a stretching/shrinking sheet in the presence of melting and viscous heating. In this study the velocity of ambient fluid and stretching/... Read More about Finite element analysis of melting effects on MHD stagnation-point non-Newtonian flow and heat transfer from a stretching/shrinking sheet.

Lie group analysis of nanofluid slip flow with Stefan Blowing effect via modified Buongiorno’s Model : entropy generation analysis (2019)
Journal Article
Rana, P., Shukla, N., Beg, O., & Bhardwaj, A. (2021). Lie group analysis of nanofluid slip flow with Stefan Blowing effect via modified Buongiorno’s Model : entropy generation analysis. Differential Equations and Dynamical Systems, 29(1), 193-210. https://doi.org/10.1007/s12591-019-00456-0

This article presents a detailed theoretical and computational analysis of alumina and titania-water nanofluid flow from a horizontal stretching sheet. At the boundary of the sheet (wall), velocity slip, thermal slip and Stefan blowing effects are co... Read More about Lie group analysis of nanofluid slip flow with Stefan Blowing effect via modified Buongiorno’s Model : entropy generation analysis.

Numerical computation of nonlinear oscillatory two-immiscible magnetohydrodynamic flow in dual porous media system : FTCS and FEM study (2019)
Journal Article
Beg, O., Zaman, A., Ali, N., Gaffar, S., & Beg, T. (2019). Numerical computation of nonlinear oscillatory two-immiscible magnetohydrodynamic flow in dual porous media system : FTCS and FEM study. Heat Transfer - Asian Research, 48(4), 1245-1263. https://doi.org/10.1002/htj.21429

The transient Hartmann magnetohydrodynamic (MHD) flow of two immiscible fluids flowing through a horizontal channel containing two porous media with oscillating lateral wall mass flux is studied. A two-dimensional spatial model is developed for the t... Read More about Numerical computation of nonlinear oscillatory two-immiscible magnetohydrodynamic flow in dual porous media system : FTCS and FEM study.

Unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants : numerical study (2019)
Journal Article
Shamshuddin, M., Mishra, S., Kadir, A., & Beg, O. (2019). Unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants : numerical study. Journal of Nanofluids, 8(2), 407-419. https://doi.org/10.1166/jon.2019.1587

Corrosion in lubricating systems involves many complex phenomena including chemical reaction, surfacial degradation, heat dissipation and unsteady effects. Biomimetic design is increasingly being employed in many branches of engineering (including tr... Read More about Unsteady chemo-tribological squeezing flow of magnetized bioconvection lubricants : numerical study.

Computation of entropy generation in dissipative transient natural convective viscoelastic flow (2019)
Journal Article
Kumar, M., Reddy, G., Kiran, G., Aslam, M., & Beg, O. (2019). Computation of entropy generation in dissipative transient natural convective viscoelastic flow. Heat Transfer - Asian Research, 48(3), 1067-1092. https://doi.org/10.1002/htj.21421

Entropy generation is an important aspect of modern thermal polymer processing optimization. Many polymers exhibit strongly non-Newtonian effects and dissipation effects in thermal processing. Motivated by these aspects in this article a numerical an... Read More about Computation of entropy generation in dissipative transient natural convective viscoelastic flow.

Computational study of heat transfer in solar collectors with different radiative flux models (2019)
Journal Article
Kuharat, S., Beg, O., Kadir, A., & Shamshuddin, M. (2019). Computational study of heat transfer in solar collectors with different radiative flux models. Heat Transfer - Asian Research, 48(3), 1002-1031. https://doi.org/10.1002/htj.21418

2D steady incompressible laminar Newtonian viscous convection-radiative heat transfer in a rectangular solar collector geometry is considered. The ANSYS FLUENT finite volume code (version 17.2) is employed to simulate the thermo-fluid characteristics... Read More about Computational study of heat transfer in solar collectors with different radiative flux models.

Computational fluid dynamics simulation of a nanofluid-based annular solar collector with different metallic nano-particles (2019)
Journal Article
Kuharat, S., & Beg, O. (2019). Computational fluid dynamics simulation of a nanofluid-based annular solar collector with different metallic nano-particles

A numerical study of convective heat transfer in an annular pipe solar collector system is conducted. The inner tube contains pure water and the annular region contains nanofluid. Three-dimensional steady-state incompressi... Read More about Computational fluid dynamics simulation of a nanofluid-based annular solar collector with different metallic nano-particles.

Biologically-inspired transport of solid spherical nanoparticles in an electrically-conducting viscoelastic fluid with heat transfer (2019)
Journal Article
Zeeshan, A., Bhatti, M., Ijaz, N., Beg, O., & Kadir, A. (2020). Biologically-inspired transport of solid spherical nanoparticles in an electrically-conducting viscoelastic fluid with heat transfer. Thermal Science, 24(2 (B)), 1251-1260. https://doi.org/10.2298/TSCI180706324Z

Bio-inspired pumping systems exploit a variety of mechanisms including peristalsis to achieve more efficient propulsion. Non-conducting, uniformly dispersed, spherical nano-sized solid particles suspended in viscoelastic medium forms a complex workin... Read More about Biologically-inspired transport of solid spherical nanoparticles in an electrically-conducting viscoelastic fluid with heat transfer.