Skip to main content

Research Repository

Advanced Search

All Outputs (4)

High ATP production fuels cancer drug resistance and metastasis : implications for mitochondrial ATP depletion therapy (2021)
Journal Article
Fiorillo, M., Ozsvari, B., Sotgia, F., & Lisanti, M. (2021). High ATP production fuels cancer drug resistance and metastasis : implications for mitochondrial ATP depletion therapy. Frontiers in Oncology, 11, 740720. https://doi.org/10.3389/fonc.2021.740720

Recently, we presented evidence that high mitochondrial ATP production is a new therapeutic target for cancer treatment. Using ATP as a biomarker, we isolated the “metabolically fittest” cancer cells from the total cell population. Importantly, ATP-h... Read More about High ATP production fuels cancer drug resistance and metastasis : implications for mitochondrial ATP depletion therapy.

MitoTracker Deep Red (MTDR) is a metabolic inhibitor for targeting mitochondria and eradicating cancer stem cells (CSCs), with anti-tumor and anti-metastatic activity in vivo (2021)
Journal Article
Sargiacomo, C., Stonehouse, S., Moftakhar, Z., Sotgia, F., & Lisanti, M. (2021). MitoTracker Deep Red (MTDR) is a metabolic inhibitor for targeting mitochondria and eradicating cancer stem cells (CSCs), with anti-tumor and anti-metastatic activity in vivo. Frontiers in Oncology, 11, 678343. https://doi.org/10.3389/fonc.2021.678343

MitoTracker Deep Red (MTDR) is a relatively non-toxic, carbocyanine-based, far-red, fluorescent probe that is routinely used to chemically mark and visualize mitochondria in living cells. Previously, we used MTDR at low nano-molar concentrations to... Read More about MitoTracker Deep Red (MTDR) is a metabolic inhibitor for targeting mitochondria and eradicating cancer stem cells (CSCs), with anti-tumor and anti-metastatic activity in vivo.

Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase (2021)
Journal Article
Fiorillo, M., Scatena, C., Naccarato, A., Sotgia, F., & Lisanti, M. (2021). Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase. Cell Death and Differentiation, 28(9), 2797-2817. https://doi.org/10.1038/s41418-021-00788-x

Here, we provide evidence that high ATP production by the mitochondrial ATP-synthase is a new therapeutic target for anticancer therapy, especially for preventing tumor progression. More specifically, we isolated a subpopulation of ATP-high cancer ce... Read More about Bedaquiline, an FDA-approved drug, inhibits mitochondrial ATP production and metastasis in vivo, by targeting the gamma subunit (ATP5F1C) of the ATP synthase.

New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes (2021)
Journal Article
Scatena, C., Fanelli, G., Fanelli, G., Menicagli, M., Aretini, P., Ortenzi, V., …Naccarato, A. (2021). New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes. Scientific reports, 11(1), 2755. https://doi.org/10.1038/s41598-021-82405-y

Recent evidence suggests that a loss of expression of caveolin in the stromal compartment (sCav-1) of human invasive breast carcinoma (IBC) may be a predictor of disease recurrence, metastasis and poor outcome. At present, there is little knowledge r... Read More about New insights in the expression of stromal caveolin 1 in breast cancer spread to axillary lymph nodes.