Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition (2022)
Journal Article
Bellomi, S., Barlocco, I., Chen, X., Delgado, J., Arrigo, R., Dimitratos, N., …Villa, A. (2022). Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition. Physical Chemistry Chemical Physics, 2, 1081-1095. https://doi.org/10.1039/d2cp04387d

Stabilizing metal nanoparticles is vital for large scale implementations of supported metal catalysts, particularly for a sustainable transition to clean energy, e.g., H2 production. In this work, iridium sub-nanometric particles were deposited on co... Read More about Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition.

The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrO (2022)
Journal Article
Velasco Vélez, J., Bernsmeier, D., Jones, T., Zeller, P., Carbonio, E., Chuang, C., …Schlögl, R. (2022). The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrO. Faraday Discussions, https://doi.org/10.1039/d1fd00114k

Photoelectron spectroscopy offers detailed information about the electronic structure and chemical composition of surfaces, owing to the short distance that the photoelectrons can escape from a dense medium. Unfortunately, photoelectron based spectro... Read More about The rise of electrochemical NAPXPS operated in the soft X-ray regime exemplified by the oxygen evolution reaction on IrO.

On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions (2022)
Journal Article
Iemhoff, A., Vennewald, M., Artz, J., Mebrahtu, C., Meledin, A., Weirich, T. E., …Palkovits, R. (2022). On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions. ChemCatChem, 14(9), https://doi.org/10.1002/cctc.202200179

Stabilization of single metal atoms is a persistent challenge in heterogeneous catalysis. Especially supported late transitions metals are prone to undergo agglomeration to nanoparticles under reducing conditions. In this study, nitrogen-rich covalen... Read More about On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions.

Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction (2022)
Journal Article
Tang, P., Lee, H., Hurlbutt, K., Huang, P., Narayanan, S., Wang, C., …Pasta, M. (2022). Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction. ACS catalysis, 12(5), 3173-3180. https://doi.org/10.1021/acscatal.1c05958

Platinum single-site catalysts (SSCs) are a promising technology for the production of hydrogen from clean energy sources. They have high activity and maximal platinum-atom utilization. However, the bonding environment of platinum during operation... Read More about Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction.

Dynamics over a Cu–graphite electrode during the gas-phase CO2 reduction investigated by APXPS (2022)
Journal Article
Arrigo, R., Blume, R., Large, A., Velasco-Vélez, J., Hävecker, M., Knop-Gericke, A., & Held, G. (2022). Dynamics over a Cu–graphite electrode during the gas-phase CO2 reduction investigated by APXPS. Faraday Discussions, https://doi.org/10.1039/d1fd00121c

The electrocatalytic conversion of CO2 to fuels and chemicals using renewable energy is a key decarbonization technology. From a technological viewpoint, the realization of such process in the gas phase and at room temperature is considered advantage... Read More about Dynamics over a Cu–graphite electrode during the gas-phase CO2 reduction investigated by APXPS.