Skip to main content

Research Repository

Advanced Search

All Outputs (6)

Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition (2022)
Journal Article

Stabilizing metal nanoparticles is vital for large scale implementations of supported metal catalysts, particularly for a sustainable transition to clean energy, e.g., H2 production. In this work, iridium sub-nanometric particles were deposited on co... Read More about Enhanced stability of sub-nanometric iridium decorated graphitic carbon nitride for H 2 production upon hydrous hydrazine decomposition.

On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions (2022)
Journal Article

Stabilization of single metal atoms is a persistent challenge in heterogeneous catalysis. Especially supported late transitions metals are prone to undergo agglomeration to nanoparticles under reducing conditions. In this study, nitrogen-rich covalen... Read More about On the stability of isolated iridium sites in N-rich frameworks against agglomeration under reducing conditions.

Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction (2022)
Journal Article

Platinum single-site catalysts (SSCs) are a promising technology for
the production of hydrogen from clean energy sources. They have high activity and
maximal platinum-atom utilization. However, the bonding environment of
platinum during operation... Read More about Elucidating the formation and structural evolution of platinum single-site catalysts for the hydrogen evolution reaction.

Dynamics over a Cu–graphite electrode during the gas-phase CO2 reduction investigated by APXPS (2022)
Journal Article
Arrigo, R., Blume, R., Large, A. I., Velasco-Vélez, J. J., Hävecker, M., Knop-Gericke, A., & Held, G. (2022). Dynamics over a Cu–graphite electrode during the gas-phase CO2 reduction investigated by APXPS. Faraday Discussions, 236, 126-140. https://doi.org/10.1039/d1fd00121c

We use ambient pressure X-ray photoelectron and absorption spectroscopies coupled with on-line gas detection to investigate in situ performance and interface chemistry of an electrodeposited Cu on a carbon support under conditions of CO2 reduction.