Skip to main content

Research Repository

Advanced Search

All Outputs (59)

Finite element stress analysis and topological optimization of a commercial aircraft seat structure (2024)
Journal Article
Amaze, C. D., Kuharat, S., Bég, O. A., Kadir, A., Jouri, W., & Bég, T. A. (in press). Finite element stress analysis and topological optimization of a commercial aircraft seat structure. #Journal not on list,

In recent years, the Finite Element Method (FEM) has emerged as a cornerstone in the field of seating design, particularly within the aircraft industry. Over the past decade, significant advancements in Finite Element (FE) analysis techniques have re... Read More about Finite element stress analysis and topological optimization of a commercial aircraft seat structure.

Dual solutions of magnetite/cobalt/manganese-zinc-aqueous nano-ferrofluids from a stretching sheet with magnetic induction effects: MHD stagnation flow computation and analysis (2023)
Journal Article
Ferdows, M., Tazin, T., Bég, A., Bég, T. A., & Ali, K. (2023). Dual solutions of magnetite/cobalt/manganese-zinc-aqueous nano-ferrofluids from a stretching sheet with magnetic induction effects: MHD stagnation flow computation and analysis. International Journal for Computational Methods in Engineering Science and Mechanics, 1-20. https://doi.org/10.1080/15502287.2023.2211985

A theoretical study is presented for the steady magnetohydrodynamic (MHD) boundary layer stagnation point flow of a nano-ferrofluid along a linearly moving stretching sheet, as a simulation of functional magnetic materials processing. Due to having... Read More about Dual solutions of magnetite/cobalt/manganese-zinc-aqueous nano-ferrofluids from a stretching sheet with magnetic induction effects: MHD stagnation flow computation and analysis.

Computation of swirling hydromagnetic nanofluid flow containing gyrotactic microorganisms from a spinning disk to a porous medium with hall current and anisotropic slip effects (2023)
Journal Article
Beg, O., Umavathi, J. C., Khan, U. F., Beg, T., & Kadir, A. (in press). Computation of swirling hydromagnetic nanofluid flow containing gyrotactic microorganisms from a spinning disk to a porous medium with hall current and anisotropic slip effects. ZAMM, 103(9), https://doi.org/10.1002/zamm.202100575

Prompted by the advancements in hybrid bio-nano-swirling magnetic bioreactors, a mathematical model for the swirling flow from a rotating disk bioreactor to a magnetic fluid saturating a porous matrix and containing nanoparticles and gyrotactic mic... Read More about Computation of swirling hydromagnetic nanofluid flow containing gyrotactic microorganisms from a spinning disk to a porous medium with hall current and anisotropic slip effects.

Computation of Sakiadis flow of an Eyring-Powell rheological fluid from a moving porous surface with a non-Fourier heat flux model (2023)
Journal Article
Beg, O., Aatif, M., Waqas, M., Zubair, M., & Kadir, A. (2023). Computation of Sakiadis flow of an Eyring-Powell rheological fluid from a moving porous surface with a non-Fourier heat flux model. Waves in Random and Complex Media, https://doi.org/10.1080/17455030.2022.2148012

This article examines theoretically and numerically the effect of non-Fourier heat flux on non-Newtonian (Eyring-Powell) Sakiadis convective flow from a moving permeable surface accompanied by a parallel free-stream velocity, as a simulation of pol... Read More about Computation of Sakiadis flow of an Eyring-Powell rheological fluid from a moving porous surface with a non-Fourier heat flux model.

Swirling bioconvective nanofluid flow from a spinning stretchable disk in a permeable medium (2022)
Journal Article
Umavathi, J. C., Beg, O., Beg, T., & Kadir, A. (2023). Swirling bioconvective nanofluid flow from a spinning stretchable disk in a permeable medium. International Journal of Modelling and Simulation, 43(5), 764-796. https://doi.org/10.1080/02286203.2022.2122928

Medical engineering is increasingly deploying nanotechnology and bio-inspired designs in the 21st century. Motivated by studying the spin coating of bio-nanofluid materials, gyrotactic bioconvection nanofluid swirling coating flow from a spinning d... Read More about Swirling bioconvective nanofluid flow from a spinning stretchable disk in a permeable medium.

Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with Joule heating (2021)
Journal Article
Shamshuddin, M., Salawu, S., Beg, O., Kadir, A., & Beg, T. (2021). Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with Joule heating. International Journal of Modelling and Simulation, 42(6), 1005-1029. https://doi.org/10.1080/02286203.2021.2012635

As a model for electroconductive nanomaterials processing, the present article examines incompressible mixed convection nanofluid flow with convective heat transport from a stretching sheet under the impact of Joule heating and radiative heat flux.... Read More about Computation of reactive mixed convection radiative viscoelastic nanofluid thermo-solutal transport from a stretching sheet with Joule heating.

Unsteady magnetohydrodynamic couple stress fluid flow from a shrinking porous sheet: Variational iteration method study (2021)
Journal Article
Reddy, G. J., Hiremath, A., Kumar, M., Beg, O., & Kadir, A. (2022). Unsteady magnetohydrodynamic couple stress fluid flow from a shrinking porous sheet: Variational iteration method study. Heat Transfer, 51(2), 2219-2236. https://doi.org/10.1002/htj.22397

AbstractMotivated by magnetic polymer manufacturing applications, the present research article examines theoretically the hydromagnetic boundary layer flow of an electrically conducting non‐Newtonian couple stress fluid due to a transient shrinking (... Read More about Unsteady magnetohydrodynamic couple stress fluid flow from a shrinking porous sheet: Variational iteration method study.

Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump (2021)
Journal Article
El Gendy, M., Beg, O., Kadir, A., Islam, M., & Tripathi, D. (2021). Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump. Journal of Mechanics in Medicine and Biology, 21(8), 2150058. https://doi.org/10.1142/S0219519421500585

Motivated by recent developments in bio-inspired medical engineering microscale pumps, in the present article a 3-dimensional sequential simulation of a peristaltic micro-pump is described to provide deeper insight into the hydromechanics of lamina... Read More about Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump.

Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction (2021)
Journal Article
Akter, S., Ferdows, M., Beg, T., Beg, O., Kadir, A., & Sun, S. (2021). Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction. Journal of Computational Design and Engineering, 8(4), 1158-1171. https://doi.org/10.1093/jcde/qwab038

A theoretical model is developed for steady magnetohydrodynamic (MHD) viscous flow resulting from a moving semi-infinite flat plate in an electrically conducting nanofluid. Thermal radiation and magnetic induction effects are included in addition t... Read More about Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction.

Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects (2021)
Journal Article
Mallikarjuna, B., Krishna, G., Srinivas, J., Beg, O., & Kadir, A. (2022). Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects. Journal of Thermal Science and Engineering Applications, 14(1), 011008. https://doi.org/10.1115/1.4050935

Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applicatio... Read More about Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects.

Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties (2021)
Journal Article
Alsenafi, A., Beg, O., Ferdows, M., Beg, T., & Kadir, A. (2021). Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties. Scientific reports, 11(1), 9877. https://doi.org/10.1038/s41598-021-88935-9

A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (v... Read More about Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties.

Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects (2021)
Journal Article
Mizan, M., Ferdows, M., Shamshuddin, M., Beg, O., Salawu, S. O., & Kadir, A. (2021). Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects. Heat Transfer, 50(6), 5240-5266. https://doi.org/10.1002/htj.22122

AbstractMotivated by enrobing processes in manufacturing technology with intelligent coatings, this study analyses the flow of an electroconductive incompressible nanofluid with heat distribution in a boundary layer containing metallic nanoparticles... Read More about Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects.

Homotopy simulation of dissipative micropolar flow and heat transfer from a two-dimensional body with heat sink effect : applications in polymer coating (2020)
Journal Article
Beg, O., Vasu, B., Ray, A., Beg, T., Kadir, A., Leonard, H., & Gorla, R. (2020). Homotopy simulation of dissipative micropolar flow and heat transfer from a two-dimensional body with heat sink effect : applications in polymer coating. Chemical and Biochemical Engineering Quarterly, 34(4), 257-275. https://doi.org/10.15255/CABEQ.2020.1849

Non-Newtonian flow from a wedge constitutes a fundamental problem in chemical engineering systems and is relevant to processing of polymers, coating systems etc. Motivated by such applications, we employ the homotopy analysis method (HAM) to obtain... Read More about Homotopy simulation of dissipative micropolar flow and heat transfer from a two-dimensional body with heat sink effect : applications in polymer coating.

Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in Cu-water based nanofluid flow from a disk in porous media : smart coating simulation (2020)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., Beg, T., & Kadir, A. (2021). Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in Cu-water based nanofluid flow from a disk in porous media : smart coating simulation. Heat Transfer, 50(3), 1931-1950. https://doi.org/10.1002/htj.21963

With emerging applications for smart and intelligent coating systems in energy, there has been increasing activity in researching magnetic nano nanomaterial coating flows. Surface tension features significantly in such regimes, and in presence of h... Read More about Computation of radiative Marangoni (thermocapillary) magnetohydrodynamic convection in Cu-water based nanofluid flow from a disk in porous media : smart coating simulation.

Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects (2020)
Journal Article
Beg, O., Venkatadri, K., Prasad, V., Beg, T., Kadir, A., & Leonard, H. (2020). Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects. Materials Science and Engineering: B, 261, 114772. https://doi.org/10.1016/j.mseb.2020.114722

We present a mathematical and numerical study of the transient Marangoni thermo-convection flow of an electrically conducting Newtonian fluid in an isotropic Darcy porous rectangular semiconductor melt enclosure with buoyancy and internal heat gene... Read More about Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects.

Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study (2020)
Journal Article
Beg, O., Beg, T., Ferdows, M., Vasu, B., Kadir, A., Leonard, H., & Kuharat, S. (2021). Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study. International Journal of Applied Electromagnetics and Mechanics, 65(2), 371-403. https://doi.org/10.3233/JAE-201508

Unsteady viscous two-dimensional magnetohydrodynamic micropolar flow, heat and mass transfer from an infinite vertical surface with Hall and Ion-slip currents is investigated theoretically and numerically. The simulation presented is motivated by el... Read More about Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study.

Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation (2020)
Journal Article
Gaffar, S., Khan, B., Beg, O., Kadir, A., & Prasad, V. (2020). Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation. Computational Thermal Sciences, 12(4), 329-344. https://doi.org/10.1615/ComputThermalScien.2020033860

Thermal coating of components with non-Newtonian materials is a rich area of chemical and process mechanical engineering. Many different rheological characteristics can be simulated for such coatings with a variety of different mathematical models.... Read More about Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation.

Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions (2020)
Journal Article
Mishra, S., Shamshuddin, M., Beg, O., & Kadir, A. (2020). Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions. International Journal of Modern Physics B, 34(18), 2050165. https://doi.org/10.1142/S0217979220501659

In the present communication, laminar, incompressible, hydromagnetic flow of an electrically conducting non-Newtonian (Sisko) fluid over a bi-directional stretching sheet in a porous medium is studied theoretically. Thermal radiation flux, homogene... Read More about Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions.

Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects (2020)
Journal Article
Kuharat, S., Beg, O., Kadir, A., Vasu, B., Beg, T., & Jouri, W. (2020). Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects. Nanoscience and Technology: An International Journal, 11(2), 141-167. https://doi.org/10.1615/NanoSciTechnolIntJ.2020031257

Nanofluids are increasingly being deployed in numerous energy applications owing to their impressive thermal enhancement properties. Motivated by these developments in the current study we present finite volume numerical simulations of natural c... Read More about Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects.

Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects (2020)
Journal Article
Kuharat, S., Beg, O., Kadir, A., & Vasu, B. (2020). Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects. Arabian Journal for Science and Engineering, 45, 9075-9093. https://doi.org/10.1007/s13369-020-04678-1

As a model of nanofluid direct absorber solar collectors (nano-DASCs), the present article describes recent numerical simulations of steady-state nanofluid natural convection in a two-dimensional enclosure. Incompressible laminar Newtonian viscous... Read More about Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects.