Skip to main content

Research Repository

Advanced Search

Outputs (16)

Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating (2019)
Journal Article
Bhatti, M., Khan, S., Beg, O., & Kadir, A. (2020). Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating. Heat Transfer - Asian Research, 49(2), 872-888. https://doi.org/10.1002/htj.21643

Magnetohydrodynamic (MHD) materials processing is becoming increasingly popular in the 21st century since it offers significant advantages over conventional systems including improved manipulation of working fluids, reduction in wear and enhanced s... Read More about Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating.

Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion (2019)
Journal Article
Bhatti, M., Khalique, C., Beg, T., Beg, O., & Kadir, A. (2020). Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Modern Physics Letters B, 34(02), 2050026. https://doi.org/10.1142/S0217984920500268

Increasingly sophisticated techniques are being developed for the manufacture of functional nanomaterials. A growing interest is also developing in magnetic nanofluid coatings which contain magnetite nanoparticles suspended in a base fluid and are re... Read More about Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion.

Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis (2019)
Journal Article
Gupta, Y., Rana, P., Beg, O., & Kadir, A. (2020). Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis. Journal of applied and computational mechanics, 6(4), 956-967. https://doi.org/10.22055/JACM.2019.30144.1689

The present paper considers a numerical investigation of transport phenomena in electricallyconducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifthorder method.... Read More about Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis.

Adomian decomposition method simulation of Von Kármán swirling bioconvection nanofluid flow (2019)
Journal Article
swirling bioconvection nanofluid flow. Journal of Central South University, 26(10), 2797-2813. https://doi.org/10.1007/s11771-019-4214-4

The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in swirling nanofluid flow past from a rotating disk. It is known that the deformation of the disk is along the radial direction. In addition to tha... Read More about Adomian decomposition method simulation of Von Kármán swirling bioconvection nanofluid flow.

Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study (2019)
Journal Article
Rahman, M., Uddin, M., Beg, O., & Kadir, A. (2019). Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study. Heat Transfer - Asian Research, 48(8), 3928-3944. https://doi.org/10.1002/htj.21575

Thermophysical and wall slip effects arise in many areas of nuclear technology. Motivated by such applications, in this article the collective influence ofvariable viscosity, thermal conductivity, velocity and thermal slipse... Read More about Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study.

Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions (2019)
Journal Article
Shamshuddin, M., Mishra, S., Beg, O., & Kadir, A. (2019). Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions. Arabian Journal for Science and Engineering, 44, 8053-8066. https://doi.org/10.1007/s13369-019-04019-x

A Riga plate is an electromagnetic actuator which comprises of permanent magnets and alternating electrodes placed on a plane surface. The present article investigates the influence of viscous and Joule heating (Ohmic dissipation) in the magnetohydro... Read More about Viscous dissipation and joule heating effects in non-Fourier MHD squeezing flow, heat and mass transfer between Riga plates with thermal radiation : variational parameter method solutions.

Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades (2019)
Journal Article
Kadir, A., Beg, O., El Gendy, M., Beg, T., & Shamshuddin, M. (2019). Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades. Heat Transfer - Asian Research, 48(6), 2302-2328. https://doi.org/10.1002/htj.21493

The current investigation presents detailed finite element simulations of coating stress analysis for a 3-dimensional, 3-layered model of a test sample representing a typical gas turbine component. Structural steel, Titanium alloy and Silicon Carbide... Read More about Computational fluid dynamic and thermal stress analysis of coatings for high-temperature corrosion protection of aerospace gas turbine blades.

Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties (2019)
Journal Article
Amirsom, N., Uddin, M., Basir, M., Kadir, A., Beg, O., & Ismail, A. (2019). Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties. Applied Sciences, 9(12), 2493. https://doi.org/10.3390/app9122493

This paper studies the combined effects of viscous dissipation, first and second order slip and variable transport properties on phase-change hydromagnetic bio-nanofluid convection flow from a stretching sheet. Nanoscale materials possess a much la... Read More about Computation of melting dissipative magnetohydrodynamic nanofluid bioconvection with second order slip and variable thermophysical properties.

Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip (2019)
Journal Article
Beg, O., Uddin, M., Beg, T., Kadir, A., Shamshuddin, M., & Babaie, M. (2020). Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip. Indian Journal of Physics, 94, 863-877. https://doi.org/10.1007/s12648-019-01520-9

A mathematical model is presented for laminar, steady natural convection mass transfer in boundary layer flow from a rotating porous vertical cone in anisotropic high permeability porous media. The transformed boundary value problem is solved subje... Read More about Numerical study of self-similar natural convection mass transfer from a rotating cone in anisotropic porous media with Stefan blowing and Navier slip.

Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip (2019)
Journal Article
Amirsom, N., Uddin, M., Basir, M., Ismail, A., Beg, O., & Kadir, A. (2019). Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip. Sains malaysiana, 48(5), 1137-1149. https://doi.org/10.17576/jsm-2019-4805-23

A theoretical study is presented for three-dimensional flow of bioconvection nanofluids containing gyrotactic microorganisms over a bi-axial stretching sheet. The effects of anisotropic slip, thermal jump and mass slip are considered in the mathemat... Read More about Three-dimensional bioconvection nanofluid flow from a bi-axial stretching sheet with anisotropic slip.