MA Rahman
Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study
Rahman, MA; Uddin, MJ; Beg, OA; Kadir, A
Authors
MJ Uddin
Prof Osman Beg O.A.Beg@salford.ac.uk
Professor
Dr Ali Kadir A.Kadir@salford.ac.uk
Associate Professor/Reader
Abstract
Thermophysical and wall slip effects arise in many areas of nuclear technology. Motivated by such applications, in this article the collective influence ofvariable viscosity, thermal conductivity, velocity and thermal slipseffects on a steady two-dimensional magnetohydrodynamic microplar fluid over a stretching sheet are analyzednumerically. The governing nonlinear partial differential equations have been converted into a system of non-linear ordinary differential equations using suitable coordinate transformations. The numerical solutions of the problem are expressed in the form of non-dimensional velocityand temperature profiles and discussed from their graphical representations. Nachtsheim-Swigert shooting iteration technique together withthesixth order Runge-Kutta integration scheme has been applied for the numerical solution.A comparison with the existing results has been done and an excellent agreement is found.Further validation with adomian decomposition method is included for the general model. Interesting features in the heat and momentum characteristics are explored. It is found that greater thermal slip and thermal conductivity elevate thermal boundary layer thickness. Increasing Prandtl number enhances Nusselt number at the wall but reduces wall couple stress (micro-rotation gradient). Temperatures are enhanced with both magnetic field and viscosity parameter. Increasing momentum (hydrodynamic) slip is found to accelerate the flow and elevate temperatures.
Citation
Rahman, M., Uddin, M., Beg, O., & Kadir, A. (2019). Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study. Heat Transfer - Asian Research, 48(8), 3928-3944. https://doi.org/10.1002/htj.21575
Journal Article Type | Article |
---|---|
Acceptance Date | Aug 13, 2019 |
Online Publication Date | Aug 29, 2019 |
Publication Date | Aug 29, 2019 |
Deposit Date | Aug 19, 2019 |
Publicly Available Date | Aug 29, 2020 |
Journal | Heat Transfer - Asian Research |
Print ISSN | 1099-2871 |
Electronic ISSN | 1523-1496 |
Publisher | Wiley |
Volume | 48 |
Issue | 8 |
Pages | 3928-3944 |
DOI | https://doi.org/10.1002/htj.21575 |
Publisher URL | https://doi.org/10.1002/htj.21575 |
Related Public URLs | https://onlinelibrary.wiley.com/journal/15231496 |
Files
HEAT TRANSFER ASIAN RESEARCH Hydromagnetic micropolar slip viscous fluid dynamics Accepted Aug 13th 2019.pdf
(1.2 Mb)
PDF
You might also like
Finite element thermal stress analysis of silicon chips
(2023)
Conference Proceeding
Lattice Boltzmann method (lbm) simulation of hybrid magnetic helium fuel cells
(2023)
Conference Proceeding
Numerical simulation of multi-physical flows in biomimetic smart pumps
(2023)
Conference Proceeding
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search