Skip to main content

Research Repository

Advanced Search

On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products

Brown, LA; Dash, J; Ogutu, BO; Richardson, AD

Authors

J Dash

BO Ogutu

AD Richardson



Abstract

Over the last two decades, satellite-derived estimates of biophysical variables have been increasingly used in operational services, requiring quantification of their accuracy and uncertainty. Evaluating satellite-derived vegetation products is challenging due to their moderate spatial resolution, the heterogeneity of the terrestrial landscape, and difficulties in adequately characterising spatial and temporal vegetation dynamics. In recent years, near-surface remote sensing has emerged as a potential source of data against which satellite-derived vegetation products can be evaluated. Several studies have focussed on the evaluation of satellite-derived phenological transition dates, however in most cases the shape and magnitude of the underlying time-series are neglected. In this paper, we investigated the relationship between the green chromatic coordinate (GCC) derived using near-surface remote sensing and a range of vegetation products derived from the Medium Resolution Imaging Spectrometer (MERIS) throughout the growing season. Moderate to strong relationships between the GCC and vegetation products derived from MERIS were observed at deciduous forest sites. Weak relationships were observed over evergreen forest sites as a result of their subtle seasonality, which is likely masked by atmospheric, bidirectional reflectance distribution function (BRDF), and shadowing effects. Temporal inconsistencies were attributed to the oblique viewing geometry of the digital cameras and differences in the incorporated spectral bands. In addition, the commonly observed summer decline in GCC values was found to be primarily associated with seasonal variations in brown pigment concentration, and to a lesser extent illumination geometry. At deciduous sites, increased sensitivity to initial increases in canopy greenness was demonstrated by the GCC, making it particularly well-suited to identifying the start of season when compared to satellite-derived vegetation products. Nevertheless, in some cases, the relationship between the GCC and vegetation products derived from MERIS was found to saturate asymptotically. This limits the potential of the approach for evaluation of the vegetation products that underlie satellite-derived phenological transition dates, and for the continuous monitoring of vegetation during the growing season, particularly at medium to high biomass study sites.

Citation

Brown, L., Dash, J., Ogutu, B., & Richardson, A. (2017). On the relationship between continuous measures of canopy greenness derived using near-surface remote sensing and satellite-derived vegetation products. Agricultural and forest meteorology, 247, 280-292. https://doi.org/10.1016/j.agrformet.2017.08.012

Journal Article Type Article
Acceptance Date Aug 10, 2017
Online Publication Date Aug 23, 2017
Publication Date Aug 23, 2017
Deposit Date Oct 28, 2022
Journal Agricultural and Forest Meteorology
Print ISSN 0168-1923
Publisher Elsevier
Volume 247
Pages 280-292
DOI https://doi.org/10.1016/j.agrformet.2017.08.012
Publisher URL http://doi.org/10.1016/j.agrformet.2017.08.012