Skip to main content

Research Repository

Advanced Search

A heuristic approach on predictive maintenance techniques : limitations and scope

Shukla, KH; Nefti-Meziani, S; Davis, ST

A heuristic approach on predictive maintenance techniques : limitations and scope Thumbnail


Authors

S Nefti-Meziani

ST Davis



Abstract

In view of the trend towards Industry 4.0, intelligent predictive monitoring and decision-making processes have become a crucial requirement in today’s manufacturing industries to safeguard data exchange and industrial assets from damage that would thus prevent the achievement of overall company goals. For enhanced reliability and safe operation of machines, frequent maintenance of the process equipment and the linked auxiliaries in a plant is highly desirable. Poor maintenance of assets can add to downtime, which can in turn affect the overall cost-effectiveness of the plant. With traditional maintenance strategies and planned or timed-based maintenance, one replaces the faulty systems when they are found to be damaged or broken. However, an early and proactive prediction of machine or equipment fault and failure state enables the industry to take the necessary action to replace the faulty system well before it stops operating entirely. This paper briefly reviews the available predictive maintenance techniques for different applications from the perspective of Industry 4.0. Furthermore, the associated challenges and opportunities are identified and discussed.

Citation

Shukla, K., Nefti-Meziani, S., & Davis, S. (2022). A heuristic approach on predictive maintenance techniques : limitations and scope. Advances in Mechanical Engineering, 14(6), https://doi.org/10.1177/16878132221101009

Journal Article Type Article
Acceptance Date Apr 27, 2022
Publication Date Jun 14, 2022
Deposit Date May 3, 2022
Publicly Available Date Jun 14, 2022
Journal Advances in Mechanical Engineering
Print ISSN 1687-8132
Publisher SAGE Publications
Volume 14
Issue 6
DOI https://doi.org/10.1177/16878132221101009
Publisher URL https://doi.org/10.1177/16878132221101009
Additional Information Funders : Engineering and Physical Sciences Research Council (EPSRC)
Grant Number: EP/R026092

Files







You might also like



Downloadable Citations