Skip to main content

Research Repository

Advanced Search

All Outputs (55)

An executable method for an intelligent speech and call recognition system using a machine learning-based approach (2021)
Journal Article
Rajarajeswari, P., & Beg, O. (2021). An executable method for an intelligent speech and call recognition system using a machine learning-based approach. Journal of Mechanics in Medicine and Biology, 21(07), 2150055. https://doi.org/10.1142/S021951942150055X

This paper describes a novel call recognizer system based on the machine learning approach. Current trends, intelligence, emotional recognition and other factors are important challenges in the real world. The proposed system provides robustness wi... Read More about An executable method for an intelligent speech and call recognition system using a machine learning-based approach.

Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study (2021)
Journal Article
Chandrawat, R., Joshi, V., & Beg, O. (2021). Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study. Journal of Nanofluids, 10(3), 431-446. https://doi.org/10.1166/jon.2021.1792

The hydrodynamics of immiscible micropolar fluids are important in a variety of engineering problems, including biofluid dynamics of arterial blood flows, pharmacodynamics, Principle of Boundary layers, lubrication technology, short waves for heat-co... Read More about Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study.

Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles (2021)
Journal Article
Chandanam, V., Venkata Lakshmi, C., Venkatadri, K., Beg, O., & Prasad, V. (2021). Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. European Physical Journal Plus, 136(8), 885. https://doi.org/10.1140/epjp/s13360-021-01881-3

A numerical study is presented of laminar viscous magnetohydrodynamic natural convection flow in a triangular shaped porous enclosure filled with electrically conducting air and containing two hot obstacles. The mathematical model is formulated in... Read More about Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles.

Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method (2021)
Journal Article
Chandrawat, R. K., Joshi, V., Beg, O., & Tripathi, D. (2022). Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method. Heat Transfer, 51(1), 99-139. https://doi.org/10.1002/htj.22299

AbstractIn this paper, the unsteady flow of two immiscible fluids with heat transfer is studied numerically with a modified cubic B‐spine Differential Quadrature Method. Generalized Couette flow of two immiscible dusty (fluid–particle suspension) and... Read More about Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method.

Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions (2021)
Journal Article
Umavathi, J., Patil, S., Mahanthesh, B., & Beg, O. (2021). Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 235(3-4), 67-81. https://doi.org/10.1177/23977914211036562

The aim of the present work is to examine the impact of magnetized nanoparticles (NPs) in enhancement of heat transport in a tribological system subjected to convective type heating (Robin) boundary conditions. The regime examined comprises the squ... Read More about Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions.

Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction (2021)
Journal Article
Akter, S., Ferdows, M., Beg, T., Beg, O., Kadir, A., & Sun, S. (2021). Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction. Journal of Computational Design and Engineering, 8(4), 1158-1171. https://doi.org/10.1093/jcde/qwab038

A theoretical model is developed for steady magnetohydrodynamic (MHD) viscous flow resulting from a moving semi-infinite flat plate in an electrically conducting nanofluid. Thermal radiation and magnetic induction effects are included in addition t... Read More about Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction.

Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model (2021)
Journal Article
Dubey, A., Vasu, B., Beg, O., & Gorla, R. (2021). Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model. Microvascular Research, 138, 104221. https://doi.org/10.1016/j.mvr.2021.104221

Existing computational fluid dynamics studies of blood flows have demonstrated that the lower wall stress and higher oscillatory shear index might be the cause of acceleration in atherogenesis of vascular walls in hemodynamics. To prevent the chanc... Read More about Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model.

Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses (2021)
Journal Article
Roy, A., & Beg, O. (2021). Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses. Applied Mathematics and Computation, 410, 126485. https://doi.org/10.1016/j.amc.2021.126485

The present article examines the transport of species in streaming blood through a rigid artery in the presence of multi-irregular stenosis. The carrier fluid i.e., blood is assumed to be non-Newtonian fluid (Casson’s viscoplastic model is used) an... Read More about Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses.

Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation (2021)
Journal Article
Tripathi, J., Vasu, B., Beg, O., & Gorla, R. (2021). Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(10), 1175-1196. https://doi.org/10.1177/09544119211026095

Two-dimensional laminar hemodynamics through a diseased artery featuring an overlapped stenosis was simulated theoretically and computationally. This study presented a mathematical model for the unsteady blood flow with hybrid biocompatible nanopar... Read More about Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation.

Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects (2021)
Journal Article
Mallikarjuna, B., Krishna, G., Srinivas, J., Beg, O., & Kadir, A. (2022). Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects. Journal of Thermal Science and Engineering Applications, 14(1), 011008. https://doi.org/10.1115/1.4050935

Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applicatio... Read More about Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects.

Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid. Microfluidics and Nanofluidics, 25(6), 53. https://doi.org/10.1007/s10404-021-02448-5

Linear and nonlinear stability analyses for the onset of time-dependent convection in a horizontal layer of a porous medium saturated by a couple-stress non-Newtonian nanofluid, intercalated between two thermally insulated plates, are presented. Br... Read More about Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid.

Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems (2021)
Book Chapter
Prakash, J., Tripathi, D., & Beg, O. (2021). Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems. In D. Tripathi, & R. Sharma (Eds.), Energy Systems and Nanotechnology (223-259). Springer. https://doi.org/10.1007/978-981-16-1256-5_13

Motivated by new developments in electromagnetic nano/microfluidic energy systems, in this chapter a novel study is described of the thermal performance in unsteady peristaltic electro-osmotic hydromagnetic viscoelastic (Jeffreys model) flow of wat... Read More about Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems.

Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects (2021)
Book Chapter
Garvandha, M., Narla, V., Tripathi, D., & Beg, O. (2021). Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects. In D. Tripathi, & R. Sharma (Eds.), Energy Systems and Nanotechnology (279-306). Springer. https://doi.org/10.1007/978-981-16-1256-5_15

The composite effects of nonlinear radiation, melting (phase change) heat transfer and Soret and Dufour cross diffusion in nanofluid boundary layer flow external to an inclined stretching cylinder is studied theoretically. Buongiorno’s nanoscale mode... Read More about Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects.

Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach (2021)
Journal Article
Zhang, L., Bhatti, M., Shahid, A., Ellahi, R., Beg, O., & Sait, S. (2021). Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach. Journal of the Taiwan Institute of Chemical Engineers, 124, 98-105. https://doi.org/10.1016/j.jtice.2021.04.065

Background: Emerging applications in nanomaterials processing are increasingly featuring multiple physical phenomena including magnetic body forces, chemical reactions and high temperature behavior. Stimulated by developing a deeper insight of nano... Read More about Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach.

Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties (2021)
Journal Article
Alsenafi, A., Beg, O., Ferdows, M., Beg, T., & Kadir, A. (2021). Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties. Scientific reports, 11(1), 9877. https://doi.org/10.1038/s41598-021-88935-9

A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (v... Read More about Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties.

Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization (2021)
Journal Article
Abbas, M., Beg, O., Zeeshan, A., Hobiny, A., & Bhatti, M. (2021). Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization. Thermal Science and Engineering Progress, 24, 100930. https://doi.org/10.1016/j.tsep.2021.100930

Magnetohydrodynamic rheological bio-inspired pumping systems are finding new applications in modern energy systems. These systems combined the electrically conducting properties of flowing liquids with rheological behaviour, biological geometries a... Read More about Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization.

High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments (2021)
Thesis
Kadir, A. (2021). High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments. (Thesis). University of Salford

Material degradation at high temperature is a serious problem in gas turbines in aircraft. In these systems, the expansion blades experience high temperatures ranging from 850 Celsius to in excess of 1000 Celsius. High temperature corrosion is very s... Read More about High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments.

Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct (2021)
Journal Article
Beg, O., Beg, T., Munjam, S., & Jangili, S. (2021). Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct. International Journal of Hydrogen Energy, 46(34), 17677-17696. https://doi.org/10.1016/j.ijhydene.2021.02.189

Hydrogen-based MHD power generators offer significant advantages over conventional designs. The optimization of these energy devices benefits from both laboratory scale testing and computational simulation. Motivated by this, in the current work, a... Read More about Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct.

Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study. Nanoscience and Technology: An International Journal, 12(2), 59-90. https://doi.org/10.1615/NanoSciTechnolIntJ.2021036786

Two-dimensional double-diffusive convective flow in a duct is studied numerically. The duct is filled with electrically conducting nanofluid and subjected to mutually orthogonal static electrical and magnetic fields. The one-phase Tiwari-Das model is... Read More about Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study.

Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer (2021)
Thesis
Kuharat, S. Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer. (Thesis). University of Salford

Nanofluids are complex colloidal suspensions comprising nanoparticles (metallic or carbon based or both) suspended in a base fluid (e.g. water). The resulting suspension provides demonstrably greater thermal performance than base fluids on their own... Read More about Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer.