Skip to main content

Research Repository

Advanced Search

All Outputs (357)

Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis (2017)
Journal Article
Tripathi, D., Bushan, S., & Beg, O. (2017). Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis. Alexandria engineering journal : AEJ, 57(3), 1349-1359. https://doi.org/10.1016/j.aej.2017.05.027

Electrokinetic transport of fluids through micro-channels by micro-pumping and micro- peristaltic pumping has stimulated considerable interest in biomedical engineering and other areas of medical technology. Deeper elucidation of the fluid dynamics o... Read More about Unsteady viscous flow driven by the combined effects of peristalsis and electro-osmosis.

Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow (2017)
Journal Article
Tripathi, D., Borode, A., Jhorar, R., Beg, O., & Tiwari, A. (2017). Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow. Microvascular Research, 114, 65-83. https://doi.org/10.1016/j.mvr.2017.06.004

A theoretical study is presented here for the electro-osmosis modulated peristaltic three-layered capillary flow of viscous fluids with different viscosities in the layers. The layers considered here are the core layer, the intermediate layer and the... Read More about Computer modelling of electro-osmotically augmented three-layered microvascular peristaltic blood flow.

Finite element computation of transient dissipative double diffusive magneto-convective nanofluid flow from a rotating vertical porous surface in porous media (2017)
Journal Article
Beg, O., Thumma, T., & Sheri, S. (2017). Finite element computation of transient dissipative double diffusive magneto-convective nanofluid flow from a rotating vertical porous surface in porous media. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 231(2), 89-108. https://doi.org/10.1177/2397791417712856

This paper aimed to investigate the transient dissipative MHD double diffusive free convective boundary layer flow of electrically-conducting nanofluids from a stationary or moving vertical porous surface in a rotating high permeability porous medium... Read More about Finite element computation of transient dissipative double diffusive magneto-convective nanofluid flow from a rotating vertical porous surface in porous media.

Electrothermal transport in biological systems : an analytical approach for electrokinetically-modulated peristaltic flow (2017)
Journal Article
Tripathi, D., Sharma, A., Beg, O., & Tiwari, A. (2017). Electrothermal transport in biological systems : an analytical approach for electrokinetically-modulated peristaltic flow. Journal of Thermal Science and Engineering Applications, 9(4), https://doi.org/10.1115/1.4036803

A mathematical model is developed to investigate the combined viscous electro-osmotic flow and heat transfer in a finite length micro-channel with peristaltic wavy walls. The influence of Joule heating is included. The unsteady two-dimensional conser... Read More about Electrothermal transport in biological systems : an analytical approach for electrokinetically-modulated peristaltic flow.

Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach (2017)
Journal Article
Akbar, N., Beg, O., Khan, Z., & Tripathi, D. (2017). Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach. International Journal of Numerical Methods for Heat and Fluid Flow, 27(6), 1215-1230. https://doi.org/10.1108/HFF-03-2016-0125

Sheet processing of magnetic nanomaterials is emerging as a new branch of smart materials manufacturing. The efficient production of such materials combines many physical phenomena including magnetohydrodynamics (MHD), nanoscale, thermal and mass dif... Read More about Magneto-nanofluid flow with heat transfer past a stretching surface for the new heat flux model using numerical approach.

Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis (2017)
Journal Article
Tripathi, D., Yadav, A., & Beg, O. (2017). Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis. European Physical Journal Plus, 132(4:173), https://doi.org/10.1140/epjp/i2017-11416-x

A mathematical model is developed for electro-osmotic peristaltic pumping of a non-Newtonian liquid in a deformable micro-channel. Stokes’ couple stress fluid model is deployed to represent realistic working liquids. The Poisson-Boltzmann equation fo... Read More about Electro-osmotic flow of couple stress fluids in a microchannel propagated by peristalsis.

Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel (2017)
Journal Article
Tripathi, D., Jorar, R., Beg, O., & Kadir, A. (2017). Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel. Journal of Molecular Liquids, 236, 358-367. https://doi.org/10.1016/j.molliq.2017.04.037

Biomimetic propulsion mechanisms are increasingly being explored in engineering sciences. Peristalsis is one of the most efficient of these mechanisms and offers considerable promise in microscale fluidics. Electrokinetic peristalsis has recently al... Read More about Electro-magneto-hydrodynamic peristaltic pumping of couple stress biofluids through a complex wavy micro-channel.

Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel : effects of joule heating and Helmholtz-Smoluchowski velocity (2017)
Journal Article
Beg, O., Tripathi, D., & Sharma, A. (2017). Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel : effects of joule heating and Helmholtz-Smoluchowski velocity. International Journal of Heat and Mass Transfer, 111, 138-149. https://doi.org/10.1016/j.ijheatmasstransfer.2017.03.089

The present article studies theoretically the electrokinetic pumping of nanofluids with heat and mass transfer in a micro-channel under peristaltic waves, a topic of some interest in medical nano-scale electro-osmotic devices. The microchannel walls... Read More about Electrothermal transport of nanofluids via peristaltic pumping in a finite micro-channel : effects of joule heating and Helmholtz-Smoluchowski velocity.

A review on hyperthermia via nanoparticle-mediated therapy (2017)
Journal Article
Beg, O., Sohail, A., Ahmed, Z., Arshad, S., & Sherin, L. (2017). A review on hyperthermia via nanoparticle-mediated therapy. Bulletin du Cancer, 104(5), 452-461. https://doi.org/10.1016/j.bulcan.2017.02.003

Hyperthermia treatment, generated by magnetic nanoparticles (MNPs) is promising since it is tumour-focused, minimally invasive and uniform. The most unique feature of magnetic nanoparticles is their reaction to and manipulation by a magnetic force wh... Read More about A review on hyperthermia via nanoparticle-mediated therapy.

Mathematical model for ciliary-induced transport in MHD flow of Cu-H2O nanoßuids with magnetic induction (2017)
Journal Article
Akbar, N., Tripathi, D., Khan, Z., & Beg, O. (2017). Mathematical model for ciliary-induced transport in MHD flow of Cu-H2O nanoßuids with magnetic induction. Chinese Journal of Physics, 55(3), 947-962. https://doi.org/10.1016/j.cjph.2017.03.005

Motivated by novel developments in surface-modified, nanoscale, magnetohydrodynamic (MHD) biomedical devices, we study theoretically the ciliary induced transport by metachronal wave propagation in hydromagnetic flow of copper-water nanofluids throu... Read More about Mathematical model for ciliary-induced transport in MHD flow of Cu-H2O nanoßuids with magnetic induction.

Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model (2017)
Journal Article
Shahid, A., Bhatti, M., Beg, O., & Kadir, A. (2017). Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model. Neural Computing and Applications, 30(11), 3467-3478. https://doi.org/10.1007/s00521-017-2933-8

In this article, the Cattaneo-Christov heat flux model is implemented to study non-Fourier heat and mass transfer in the magnetohydrodynamic (MHD) flow of an upper convected Maxwell (UCM) fluid over a permeable stretching sheet under a transverse con... Read More about Numerical study of radiative Maxwell viscoelastic magnetized flow from a stretching permeable sheet with the Cattaneo–Christov heat flux model.

Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet (2017)
Journal Article
Beg, O., Thumma, T., & Kadir, A. (2017). Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet. Journal of Molecular Liquids, 232, 159-173. https://doi.org/10.1016/j.molliq.2017.02.032

This paper numerically investigates radiative magnetohydrodynamic mixed convection boundary layer flow of nanofluids over a nonlinear inclined stretching/shrinking sheet in the presence of heat source/sink and viscous dissipation. The Rosseland appro... Read More about Numerical study of heat source/sink effects on dissipative magnetic nanofluid flow from a non-linear inclined stretching/shrinking sheet.

Physical hydrodynamic propulsion model study for creeping viscous flow through a ciliated porous tube (2017)
Journal Article
Akbar, N., Butt, A., Tripathi, D., & Beg, O. (2017). Physical hydrodynamic propulsion model study for creeping viscous flow through a ciliated porous tube. Pramana, 88(52), https://doi.org/10.1007/s12043-016-1354-z

The present investigation focuses on a mathematical study of creeping viscous flow induced by metachronal wave propagation in a horizontal ciliated tube containing porous media. Creeping flow limitations are imposed i.e. inertial forces are small com... Read More about Physical hydrodynamic propulsion model study for creeping viscous flow through a ciliated porous tube.

Stochastic analysis of a deterministic and seasonally forced SEI model for improved disease spread simulation (2017)
Journal Article
Sohail, A., Li, Z., Iftikhar, M., Mohamed, M., & Beg, O. (2017). Stochastic analysis of a deterministic and seasonally forced SEI model for improved disease spread simulation. Journal of Mechanics in Medicine and Biology, 17(4), 1750067. https://doi.org/10.1142/S0219519417500671

The geographic distribution of different viruses has developed widely, giving rise to an escalating number of cases during the past two decades. The deterministic Susceptible, Exposed, Infectious (SEI) models can demonstrate the spatio-temporal dynam... Read More about Stochastic analysis of a deterministic and seasonally forced SEI model for improved disease spread simulation.

Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics (2017)
Journal Article
Tripathi, D., Bushan, S., & Beg, O. (2017). Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics. Journal of Mechanics in Medicine and Biology, 17(3), 1750052. https://doi.org/10.1142/S021951941750052X

A mathematical model is developed to analyse electro-kinetic effects on unsteady peristaltic transport of blood in cylindrical vessels of finite length. The Newtonian viscous model is adopted. The analysis is restricted under Debye-Hückel linearizati... Read More about Analytical study of electro-osmosis modulated capillary peristaltic hemodynamics.

Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods (2017)
Journal Article
Beg, O., Motsa, S., Beg, T., Abbas, A., Kadir, A., & Sohail, A. (2017). Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods. International Journal of Applied and Computational Mathematics, 3(4), 3593-3613. https://doi.org/10.1007/s40819-017-0318-4

Motivated by petro-chemical geological systems, we consider the natural convection boundary layer flow from a vertical isothermal wavy surface adjacent to a saturated non-Darcian high permeability porous medium. High permeability is considered to rep... Read More about Numerical study of nonlinear heat transfer from a wavy surface to a high permeability medium with pseudo-spectral and smoothed particle methods.

Swimming dynamics of a micro-organism in a couple stress fluid : a rheological model of embryological hydrodynamic propulsion (2017)
Journal Article
Ali, N., Sajid, M., Abbas, Z., & Beg, O. (2017). Swimming dynamics of a micro-organism in a couple stress fluid : a rheological model of embryological hydrodynamic propulsion. Journal of Mechanics in Medicine and Biology, 17(3), https://doi.org/10.1142/S0219519417500543

Mathematical simulations of embryological fluid dynamics are fundamental to improving clinical understanding of the intricate mechanisms underlying sperm locomotion. The strongly rheological nature of reproductive fluids has been established for a nu... Read More about Swimming dynamics of a micro-organism in a couple stress fluid : a rheological model of embryological hydrodynamic propulsion.

Numerical study of oxygen diffusion from capillary to tissues during hypoxia with external force effects (2017)
Journal Article
to tissues during hypoxia with external force effects. Journal of Mechanics in Medicine and Biology, 17(2), 1750027.1-1750027.20. https://doi.org/10.1142/S0219519417500270

A mathematical model to simulate oxygen delivery through a capillary to tissues under the influence of an external force field is presented. The multi-term general fractional diffusion equation containing force terms and a time dependent absorbent te... Read More about Numerical study of oxygen diffusion from capillary to tissues during hypoxia with external force effects.

Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic darcian porous media (2017)
Journal Article
Beg, O., Prasad, V., Vasu, B., & Gorla, R. (2017). Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic darcian porous media. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(6), 2035-2054. https://doi.org/10.1007/s40430-017-0708-x

Free convective magnetohydrodynamic flow from a spinning vertical cone to an orthotropic Darcian porous medium under a transverse magnetic field is studied. The non-dimensionalized two-point boundary value problem is solved numerically using the Kell... Read More about Computational modelling of magnetohydrodynamic convection from a rotating cone in orthotropic darcian porous media.

Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under peristaltic waves (2017)
Journal Article
Beg, O., Akbar, N., Huda, A., & Khan, M. (2017). Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under peristaltic waves. Results in Physics, 7, 413-425. https://doi.org/10.1016/j.rinp.2016.12.036

The present investigation addresses nanofluid flow and heat transfer in a vertical tube with temperature-dependent viscosity. A Tiwari-Das type formulation is employed for the nanofluid with a viscosity modification. The transport equations are trans... Read More about Dynamics of variable-viscosity nanofluid flow with heat transfer in a flexible vertical tube under peristaltic waves.