Skip to main content

Research Repository

Advanced Search

Prof Osman Beg's Outputs (56)

Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure (2019)
Journal Article
Venkatadri, K., Gaffar, S., Prasad, V., Khan, B., & Beg, O. (2019). Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure. International journal of automotive and mechanical engineering (Kuantan), 16(4), 7375-7390. https://doi.org/10.15282/ijame.16.4.2019.13.0547

Natural convection within trapezoidal enclosures finds significant practical applications. The natural convection flows play a prominent role in the transport of energy in energy-related applications, in case of proper design enclosures to achieve hi... Read More about Simulation of natural convection heat transfer in a 2-D trapezoidal enclosure.

Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure : heat flow visualization through energy flux vectors (2019)
Journal Article
Venkatadri, K., Beg, O., Rajarajeswar, P., & Prasad, V. (2020). Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure : heat flow visualization through energy flux vectors. International Journal of Mechanical Sciences, 171, https://doi.org/10.1016/j.ijmecsci.2019.105391

A theoretical and numerical study of natural convection intwo-dimensional laminar
incompressible flow in a trapezoidal enclosurein the presence of thermal radiation is conducted,
motivated by energy systems applications. Heat flow visualization via... Read More about Numerical simulation of thermal radiation influence on natural convection in a trapezoidal enclosure : heat flow visualization through energy flux vectors.

Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating (2019)
Journal Article
Bhatti, M., Khan, S., Beg, O., & Kadir, A. (2020). Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating. Heat Transfer - Asian Research, 49(2), 872-888. https://doi.org/10.1002/htj.21643

Magnetohydrodynamic (MHD) materials processing is becoming increasingly popular in the 21st
century since it offers significant advantages over conventional systems including improved
manipulation of working fluids, reduction in wear and enhanced s... Read More about Differential transform solution for hall and ion slip effects on radiative-convective casson flow from a stretching sheet with convective heating.

Entropy analysis on convective film flow of power-law fluid with nanoparticles along an inclined plate (2019)
Journal Article
fluid with nanoparticles along an inclined plate. Journal of Applied Mechanics and Technical Physics, 60, 827-841. https://doi.org/10.1134/S0021894419050067

Entropy generation in a two-dimensional steady laminar thin film convection flow of a non-Newtonian nanofluid (Ostwald-de-Waele-type power-law fluid with embedded nanoparticles) along an inclined plate is examined theoretically. A revised Buongiorno... Read More about Entropy analysis on convective film flow of power-law fluid with nanoparticles along an inclined plate.

Numerical simulation of a peristaltic biorheological smart micro-pump (2019)
Presentation / Conference
El Gendy, M., Beg, O., Beg, T., Kadir, A., & Jouri, W. (2019, December). Numerical simulation of a peristaltic biorheological smart micro-pump. Poster presented at IIER 767th International Conference on Recent Innovations in Engineering and Technology (ICRIET 2019), Doha, Qatar

Finite volume numerical simulation of three dimensional natural convection in a gold water nanofluid inclined prismatic solar direct absorber enclosure with the Tiwari-Das volume fraction model (2019)
Presentation / Conference
Kuharat, S., Beg, O., Kadir, A., Leonard, H., & Jouri, W. (2019, December). Finite volume numerical simulation of three dimensional natural convection in a gold water nanofluid inclined prismatic solar direct absorber enclosure with the Tiwari-Das volume fraction model. Poster presented at IIER 767th International Conference on Recent Innovations in Engineering and Technology (ICRIET 2019), Doha, Qatar

Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion (2019)
Journal Article
Bhatti, M., Khalique, C., Beg, T., Beg, O., & Kadir, A. (2020). Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion. Modern Physics Letters B, 34(02), 2050026. https://doi.org/10.1142/S0217984920500268

Increasingly sophisticated techniques are being developed for the manufacture of functional nanomaterials. A growing interest is also developing in magnetic nanofluid coatings which contain magnetite nanoparticles suspended in a base fluid and are re... Read More about Numerical study of slip and radiative effects on magnetic Fe3O4-water-based nanofluid flow from a nonlinear stretching sheet in porous media with Soret and Dufour diffusion.

Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis (2019)
Journal Article
Gupta, Y., Rana, P., Beg, O., & Kadir, A. (2020). Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis. Journal of applied and computational mechanics, 6(4), 956-967. https://doi.org/10.22055/JACM.2019.30144.1689

The present paper considers a numerical investigation of transport phenomena in electricallyconducting nanofluid flow within a porous bed utilizing Buongiorno’s transport model and Runge-Kutta-Fehlberg fourth-fifthorder method.... Read More about Multiple solutions for slip effects on dissipative magneto-nanofluid transport phenomena in porous media : stability analysis.

Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery (2019)
Journal Article
Vasu, B., Dubey, A., & Beg, O. (2020). Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery. Heat Transfer - Asian Research, 49(1), 33-66. https://doi.org/10.1002/htj.21598

The present study considers two-dimensional mathematical modelling of non-Newtonian nanofluid hemodynamics with heat and mass transfer in a stenosed coronary artery in the presence of a radial magnetic field. The second-grade differential viscoelasti... Read More about Finite element analysis of non-Newtonian magnetohemodynamic flow conveying nanoparticles through a stenosed coronary artery.

Perturbation and numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-darcy porous medium with robin boundary conditions (2019)
Journal Article
Umavathi, J., & Beg, O. (2019). Perturbation and numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-darcy porous medium with robin boundary conditions. Journal of Engineering Mathematics, 119, 135-147. https://doi.org/10.1007/s10665-019-10022-w

A mathematical model for thermosolutal convection flow in an open two-dimensional vertical channel containing a porous medium saturated with reactive Newtonian fluid is developed and studied. Robin boundary conditions are prescribed, and a first-orde... Read More about Perturbation and numerical study of double-diffusive dissipative reactive convective flow in an open vertical duct containing a non-darcy porous medium with robin boundary conditions.

Adomian decomposition method simulation of Von Kármán swirling bioconvection nanofluid flow (2019)
Journal Article
swirling bioconvection nanofluid flow. Journal of Central South University, 26(10), 2797-2813. https://doi.org/10.1007/s11771-019-4214-4

The study reveals analytically on the 3-dimensional viscous time-dependent gyrotactic bioconvection in
swirling nanofluid flow past from a rotating disk. It is known that the deformation of the disk is along the radial
direction. In addition to tha... Read More about Adomian decomposition method simulation of Von Kármán swirling bioconvection nanofluid flow.

Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipation (2019)
Journal Article
channel with Joule dissipation. Thermal Science and Engineering Progress, 15, 100424. https://doi.org/10.1016/j.tsep.2019.100424

Biomimetic designs are increasingly filtering into new areas of technology in recent years. Such systems exploit characteristics intrinsic to nature to achieve enhanced adaptivity and efficiency in engineering applications. Peristaltic propulsion is... Read More about Analysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipation.

Homotopy semi-numerical modeling of non-Newtonian nanofluid transport external to multiple geometries using a revised Buongiorno Model (2019)
Journal Article
Ray, A., Vasu, B., Beg, O., Gorla, R., & Murthy, P. (2019). Homotopy semi-numerical modeling of non-Newtonian nanofluid transport external to multiple geometries using a revised Buongiorno Model. Inventions, 4(4), https://doi.org/10.3390/inventions4040054

A semi-analytical solution for the convection of a power-law nanofluid external to three different geometries (i.e. cone, wedge and plate), subject to convective boundary condition is presented. A revised Buongiorno model is employed for the nanoflui... Read More about Homotopy semi-numerical modeling of non-Newtonian nanofluid transport external to multiple geometries using a revised Buongiorno Model.

Biological interactions between carreau fluid and micro-swimmers in a complex wavy canal with MHD effects (2019)
Journal Article
Ali, N., Asghar, Z., Sajid, M., & Beg, O. (2019). Biological interactions between carreau fluid and micro-swimmers in a complex wavy canal with MHD effects. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 41, 446. https://doi.org/10.1007/s40430-019-1953-y

The efficient magnetic swimming of actual or mechanically designed micro-swimmers within bounded regions is reliant on several factors. Few of which are: the actuation of these swimmers via magnetic field, rheology of surrounding liquid (with dominan... Read More about Biological interactions between carreau fluid and micro-swimmers in a complex wavy canal with MHD effects.

Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study (2019)
Journal Article
Rahman, M., Uddin, M., Beg, O., & Kadir, A. (2019). Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study. Heat Transfer - Asian Research, 48(8), 3928-3944. https://doi.org/10.1002/htj.21575

Thermophysical and wall slip effects arise in many areas of nuclear technology. Motivated by such applications, in this article the collective influence ofvariable viscosity, thermal conductivity, velocity and thermal slipse... Read More about Influence of variable viscosity and thermal conductivity, hydrodynamic and thermal slips on magnetohydrodynamic micropolar flow: a numerical study.

Computational unsteady flow analysis for third-grade fluid from an isothermal vertical cylinder through a Darcian porous medium (2019)
Journal Article
Hiremath, A., Reddy, G., & Beg, O. (2019). Computational unsteady flow analysis for third-grade fluid from an isothermal vertical cylinder through a Darcian porous medium. Heat Transfer - Asian Research, 48(7), 2752-2772. https://doi.org/10.1002/htj.21511

The present paper describes a mathematical model for free-convective laminar incompressible boundary layer flow of a third-grade fluid of the Reiner-Rivlin differential type, external to a uniformly heated semi-infinite vertical cylinder embedded in... Read More about Computational unsteady flow analysis for third-grade fluid from an isothermal vertical cylinder through a Darcian porous medium.

Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids (2019)
Journal Article
Ramesh, K., Tripathi, D., & Beg, O. (2019). Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids. Propulsion and Power Research, 8(3), 221-233. https://doi.org/10.1016/j.jppr.2018.06.002

A theoretical study is conducted for magnetohydrodynamic pumping of electro-conductive couple stress physiological liquids (e.g. blood) through a two-dimensional ciliated channel. A geometric model is employed for the cilia which are distributed at e... Read More about Cilia-assisted hydromagnetic pumping of biorheological couple stress fluids.