M Garcia-Alonso
Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules
Garcia-Alonso, M; Riano, D; Chuvieco, E; Salas, J; Danson, FM
Abstract
This paper presents a method for mapping fuel types using previous termLiDARnext term and previous termmultispectralnext termprevious termdatanext term. A two-phase classification method is proposed to discriminate the fuel classes of the Prometheus classification system, which is adapted to the ecological characteristics of the European Mediterranean basin. The first step mapped the main fuel groups, namely grass, shrub and tree, as well as non-fuel classes. This phase was carried out using a Support Vector Machine (SVM) classification combining previous termLiDARnext term and previous ermmultispectralnext termprevious termdatanext term. The overall accuracy of this classification was 92.8% with a kappa coefficient of 0.9. The second phase of the proposed method focused on discriminating additional fuel categories based on vertical information provided by the previous termLiDARnext term measurements. Decision rules were applied to the output of the SVM classification based on the mean height of previous termLiDARnext term returns and the vertical distribution of fuels, described by the relative previous termLiDARnext term point density in different height intervals. The final fuel type classification yielded an overall accuracy of 88.24% with a kappa coefficient of 0.86. Some confusion was observed between fuel types 7 (dense tree cover presenting vertical continuity with understory vegetation) and 5 (trees with less than 30% of shrub cover) in some areas covered by Holm oak, which showed low previous termLiDARnext term pulses penetration so that the understory vegetation was not correctly sampled.
Citation
Garcia-Alonso, M., Riano, D., Chuvieco, E., Salas, J., & Danson, F. (2011). Multispectral and LiDAR data fusion for fuel type mapping using Support Vector Machine and decision rules. Remote Sensing of Environment, 115(6), 1369-1379. https://doi.org/10.1016/j.rse.2011.01.017
Journal Article Type | Article |
---|---|
Publication Date | Jun 1, 2011 |
Deposit Date | Sep 28, 2011 |
Journal | Remote Sensing of Environment |
Print ISSN | 0034-4257 |
Publisher | Elsevier |
Peer Reviewed | Peer Reviewed |
Volume | 115 |
Issue | 6 |
Pages | 1369-1379 |
DOI | https://doi.org/10.1016/j.rse.2011.01.017 |
Keywords | LiDAR, data fusion, support vector machine, decision rules, fuel types, prometheus classification system |
Publisher URL | http://dx.doi.org/ 10.1016/j.rse.2011.01.017 |
You might also like
Globe-LFMC 2.0, an enhanced and updated dataset for live fuel moisture content research
(2024)
Journal Article
Stage 1 Validation of Plant Area Index from the Global Ecosystem Dynamics Investigation
(2023)
Journal Article
The terrestrial laser scanning revolution in forest ecology
(2018)
Journal Article
Downloadable Citations
About USIR
Administrator e-mail: library-research@salford.ac.uk
This application uses the following open-source libraries:
SheetJS Community Edition
Apache License Version 2.0 (http://www.apache.org/licenses/)
PDF.js
Apache License Version 2.0 (http://www.apache.org/licenses/)
Font Awesome
SIL OFL 1.1 (http://scripts.sil.org/OFL)
MIT License (http://opensource.org/licenses/mit-license.html)
CC BY 3.0 ( http://creativecommons.org/licenses/by/3.0/)
Powered by Worktribe © 2024
Advanced Search