Skip to main content

Research Repository

Advanced Search

Prof Osman Beg's Outputs (449)

Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid. Microfluidics and Nanofluidics, 25(6), 53. https://doi.org/10.1007/s10404-021-02448-5

Linear and nonlinear stability analyses for the onset of time-dependent convection in a
horizontal layer of a porous medium saturated by a couple-stress non-Newtonian nanofluid,
intercalated between two thermally insulated plates, are presented. Br... Read More about Simulation of the onset of convection in a porous medium layer saturated by a couple-stress nanofluid.

Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems (2021)
Book Chapter
Prakash, J., Tripathi, D., & Beg, O. (2021). Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems. In D. Tripathi, & R. Sharma (Eds.), Energy Systems and Nanotechnology (223-259). Springer. https://doi.org/10.1007/978-981-16-1256-5_13

Motivated by new developments in electromagnetic nano/microfluidic energy systems, in this chapter a
novel study is described of the thermal performance in unsteady peristaltic electro-osmotic hydromagnetic
viscoelastic (Jeffreys model) flow of wat... Read More about Thermal analysis of γAl2O3/H2O and γAl2O3/C2H6O2 elastico-viscous nanofluid flow driven by peristaltic wave propagation with electroosmotic and magnetohydrodynamic effects : applications in nanotechnological energy systems.

Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects (2021)
Book Chapter
Garvandha, M., Narla, V., Tripathi, D., & Beg, O. (2021). Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects. In D. Tripathi, & R. Sharma (Eds.), Energy Systems and Nanotechnology (279-306). Springer. https://doi.org/10.1007/978-981-16-1256-5_15

The composite effects of nonlinear radiation, melting (phase change) heat transfer and Soret and Dufour cross diffusion in nanofluid boundary layer flow external to an inclined stretching cylinder is studied theoretically. Buongiorno’s nanoscale mode... Read More about Modelling the impact of melting and nonlinear radiation on reactive Buongiorno nanofluid boundary layer flow from an inclined stretching cylinder with cross diffusion and curvature effects.

Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach (2021)
Journal Article
Zhang, L., Bhatti, M., Shahid, A., Ellahi, R., Beg, O., & Sait, S. (2021). Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach. Journal of the Taiwan Institute of Chemical Engineers, 124, 98-105. https://doi.org/10.1016/j.jtice.2021.04.065

Background: Emerging applications in nanomaterials processing are increasingly featuring
multiple physical phenomena including magnetic body forces, chemical reactions and high
temperature behavior. Stimulated by developing a deeper insight of nano... Read More about Nonlinear nanofluid fluid flow under the consequences of Lorentz forces and Arrhenius kinetics through a permeable surface : a robust spectral approach.

Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties (2021)
Journal Article
Alsenafi, A., Beg, O., Ferdows, M., Beg, T., & Kadir, A. (2021). Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties. Scientific reports, 11(1), 9877. https://doi.org/10.1038/s41598-021-88935-9

A mathematical model is developed for stagnation point flow toward a stretching or shrinking sheet of liquid nano-biofilm containing spherical nano-particles and bioconvecting gyrotactic micro-organisms. Variable transport properties of the liquid (v... Read More about Numerical study of nano-biofilm stagnation flow from a nonlinear stretching/shrinking surface with variable nanofluid and bioconvection transport properties.

Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization (2021)
Journal Article
Abbas, M., Beg, O., Zeeshan, A., Hobiny, A., & Bhatti, M. (2021). Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization. Thermal Science and Engineering Progress, 24, 100930. https://doi.org/10.1016/j.tsep.2021.100930

Magnetohydrodynamic rheological bio-inspired pumping systems are finding new
applications in modern energy systems. These systems combined the electrically conducting properties of
flowing liquids with rheological behaviour, biological geometries a... Read More about Parametric analysis and minimization of entropy generation in bioinspired magnetized non-Newtonian nanofluid pumping using artificial neural networks and particle swarm optimization.

High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments (2021)
Thesis
Kadir, A. (2021). High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments. (Thesis). University of Salford

Material degradation at high temperature is a serious problem in gas turbines in aircraft. In these systems, the expansion blades experience high temperatures ranging from 850 Celsius to in excess of 1000 Celsius. High temperature corrosion is very s... Read More about High-temperature corrosion protection of gas turbine blades with micro-coatings and nano-coatings : simulation and experiments.

Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct (2021)
Journal Article
Beg, O., Beg, T., Munjam, S., & Jangili, S. (2021). Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct. International Journal of Hydrogen Energy, 46(34), 17677-17696. https://doi.org/10.1016/j.ijhydene.2021.02.189

Hydrogen-based MHD power generators offer significant advantages over conventional designs. The optimization of these energy devices
benefits from both laboratory scale testing and computational simulation. Motivated by this, in the current work, a... Read More about Homotopy and adomian semi-numerical solutions for oscillatory flow of partially ionized dielectric hydrogen gas in a rotating MHD energy generator duct.

Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study. Nanoscience and Technology: An International Journal, 12(2), 59-90. https://doi.org/10.1615/NanoSciTechnolIntJ.2021036786

Two-dimensional double-diffusive convective flow in a duct is studied numerically. The duct is filled with electrically conducting nanofluid and subjected to mutually orthogonal static electrical and magnetic fields. The one-phase Tiwari-Das model is... Read More about Double diffusive convection in a dissipative electrically conducting nanofluid under orthogonal electrical and magnetic fields : a numerical study.

Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer (2021)
Thesis
Kuharat, S. Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer. (Thesis). University of Salford

Nanofluids are complex colloidal suspensions comprising nanoparticles (metallic or carbon based or both) suspended in a base fluid (e.g. water). The resulting suspension provides demonstrably greater thermal performance than base fluids on their own... Read More about Numerical study of nanofluid-based direct absorber solar collector systems with metallic/carbon nanoparticles, multiple geometries and multi-mode heat transfer.

Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation (2021)
Journal Article
Shukla, N., Rana, P., Kuharat, S., & Beg, O. (2022). Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation. Journal of applied and computational mechanics, 8(1), 206-218. https://doi.org/10.22055/JACM.2020.33580.2250

Motivated by exploring the near-wall transport phenomena involved in bioconvection fuel cells combined with electrically conducting
nanofluids, in the present article, a detailed analytical treatment using homotopy analysis method (HAM) is presented... Read More about Non-similar radiative bioconvection nanofluid flow under oblique magnetic field with entropy generation.

Taylor dispersion in non-Darcy porous media with bulk chemical reaction : a model for drug transport in impeded blood vessels (2021)
Journal Article
Roy, A., Beg, O., Saha, A., & Ramana Murthy, J. (2021). Taylor dispersion in non-Darcy porous media with bulk chemical reaction : a model for drug transport in impeded blood vessels. Journal of Engineering Mathematics, 127(1), 24. https://doi.org/10.1007/s10665-021-10120-8

The present article discusses the solute transport process in unsteady laminar blood flow through
a non-Darcy porous medium, as a model for drug movement in blood vessels containing deposits.
The Darcy-Brinkman-Forchheimer drag force formulation is... Read More about Taylor dispersion in non-Darcy porous media with bulk chemical reaction : a model for drug transport in impeded blood vessels.

Thermal analysis of airway mucus clearance by ciliary activity in the presence of inertial forces (2021)
Journal Article
Shaheen, S., Maqbool, K., Beg, O., & Gul, F. (2021). Thermal analysis of airway mucus clearance by ciliary activity in the presence of inertial forces. SN Applied Sciences, 3(4), 461. https://doi.org/10.1007/s42452-021-04439-1

In this study heat transfer effects on cilia induced mucus flow in human airways is presented. The elliptic wave pattern of cilia tips produces metachronal wave which enables the transportation of highly viscous mucus with nonzero inertial forces. Up... Read More about Thermal analysis of airway mucus clearance by ciliary activity in the presence of inertial forces.

Multi-objective optimal design of an Organic Rankine Cycle (ORC) plate heat exchanger with phase change (2021)
Journal Article
Norouzi, M., Targhi, R., Hashemian, S., Vaziri, S., & Beg, O. (2021). Multi-objective optimal design of an Organic Rankine Cycle (ORC) plate heat exchanger with phase change. AUT journal of mechanical engineering (Online), 5(4), 8. https://doi.org/10.22060/AJME.2021.19168.5935

Organic Rankine Cycles (ORCs) have been shown to be feasible thermodynamically for electricity generation from organic fluids as working fluids with low temperature sources. Heat exchanger performance is strongly influenced by thermodynamic cycle eff... Read More about Multi-objective optimal design of an Organic Rankine Cycle (ORC) plate heat exchanger with phase change.

Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects (2021)
Journal Article
Mizan, M., Ferdows, M., Shamshuddin, M., Beg, O., Salawu, S. O., & Kadir, A. (2021). Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects. Heat Transfer, 50(6), 5240-5266. https://doi.org/10.1002/htj.22122

AbstractMotivated by enrobing processes in manufacturing technology with intelligent coatings, this study analyses the flow of an electroconductive incompressible nanofluid with heat distribution in a boundary layer containing metallic nanoparticles... Read More about Computation of ferromagnetic/nonmagnetic nanofluid flow over a stretching cylinder with induction and curvature effects.

Electro-osmotic propulsion of Jeffrey fluid in a ciliated channel under the effect of nonlinear radiation and heat source/sink (2021)
Journal Article
Shaheen, S., Beg, O., Gul, F., & Maqbool, K. (2021). Electro-osmotic propulsion of Jeffrey fluid in a ciliated channel under the effect of nonlinear radiation and heat source/sink. Journal of Biomechanical Engineering, 143(5), 051008. https://doi.org/10.1115/1.4049810

Mathematical modelling of mechanical system in microfluidics is an emerging area of interest in micro scale engineering. Since microfluidic devices use the hair like structure of artificial cilia for pumping, mixing and sensing in different fields, t... Read More about Electro-osmotic propulsion of Jeffrey fluid in a ciliated channel under the effect of nonlinear radiation and heat source/sink.

Blood Flow Mediated Hybrid Nanoparticles in Human Arterial System: Recent Research, Development and Applications (2021)
Journal Article
Tripathi, J., Vasu, B., Gorla, R., Chamkha, A. J., Murthy, P. V. S. N., & Beg, O. (2021). Blood Flow Mediated Hybrid Nanoparticles in Human Arterial System: Recent Research, Development and Applications. Journal of Nanofluids, 10(1), 1-30. https://doi.org/10.1166/jon.2021.1769

Blood flow dynamics contributes an elemental part in the formation and expansion of cardiovascular diseases in human body. Computational simulation of blood flow in the human arterial system has been widely used in recent decades for better understan... Read More about Blood Flow Mediated Hybrid Nanoparticles in Human Arterial System: Recent Research, Development and Applications.

ADM solution for Cu/CuO –water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects (2021)
Journal Article
Thumma, T., Mishra, S., & Beg, O. (2021). ADM solution for Cu/CuO –water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects. Journal of applied and computational mechanics, 7(3), 1291-1305. https://doi.org/10.22055/JACM.2020.33137.2167

A mathematical modelis presented for entropy generation in transient hydromagnetic flow of an electroconductive
magnetic Casson (non-Newtonian) nanofluid over a porous stretching sheet in a permeable medium. The
Cattaneo-Christov heat flux model is... Read More about ADM solution for Cu/CuO –water viscoplastic nanofluid transient slip flow from a porous stretching sheet with entropy generation, convective wall temperature and radiative effects.

Mathematical modelling of unsteady solute dispersion in two-fluid (micropolar-Newtonian) blood flow with bulk reaction (2021)
Journal Article
Roy, A., & Beg, O. (2021). Mathematical modelling of unsteady solute dispersion in two-fluid (micropolar-Newtonian) blood flow with bulk reaction. International Communications in Heat and Mass Transfer, 122, 105169. https://doi.org/10.1016/j.icheatmasstransfer.2021.105169

A mathematical model is developed for axisymmetric, incompressible, and fully
developed hemodynamic transport of a reactive diffusing species, e. g. oxygen, in a rigid,
impermeable artery under constant axial pressure gradient which undergoes a fir... Read More about Mathematical modelling of unsteady solute dispersion in two-fluid (micropolar-Newtonian) blood flow with bulk reaction.

Energy conservation of bio-nanofluids past a needle in the presence of Stefan blowing : lie symmetry and numerical simulation (2021)
Journal Article
Beg, O., Zohra, F., Uddin, M., & Ismail, A. (2021). Energy conservation of bio-nanofluids past a needle in the presence of Stefan blowing : lie symmetry and numerical simulation. Case Studies in Thermal Engineering, 24, 100861. https://doi.org/10.1016/j.csite.2021.100861

Thermal energy management associated with the transmission of heat is one of the main
problems in many industrial setups (e.g. pharmaceutical, chemical and food) and bioengineering
devices (e.g. hospital ventilation, heating, cooling devices, heat... Read More about Energy conservation of bio-nanofluids past a needle in the presence of Stefan blowing : lie symmetry and numerical simulation.