Skip to main content

Research Repository

Advanced Search

Prof Osman Beg's Outputs (454)

Convective fluid flow and heat transfer in a vertical rectangular duct containing a horizontal porous medium and fluid layer (2020)
Journal Article
Umavathi, J., & Beg, O. (2021). Convective fluid flow and heat transfer in a vertical rectangular duct containing a horizontal porous medium and fluid layer. International Journal of Numerical Methods for Heat and Fluid Flow, 31(4), 1320-1344. https://doi.org/10.1108/HFF-06-2020-0373

Purpose-A numerical analysis is presented to investigate thermally and
hydrodynamically fully developed convection in a duct of rectangular cross-section
containing a porous medium and fluid layer.
Design/methodology/approach-The Darcy-Brinkman-Fo... Read More about Convective fluid flow and heat transfer in a vertical rectangular duct containing a horizontal porous medium and fluid layer.

Modeling the onset of thermosolutal convective instability in a non-Newtonian nanofluid-saturated porous medium layer (2020)
Journal Article
Umavathi, J., & Beg, O. (2020). Modeling the onset of thermosolutal convective instability in a non-Newtonian nanofluid-saturated porous medium layer. Chinese Journal of Physics, 68, 147-167. https://doi.org/10.1016/j.cjph.2020.09.014

The onset of double-diffusive (thermosolutal) convection in horizontal porous layer saturated
with an incompressible couple stress nanofluid saturated is studied with thermal conductivity
and viscosity dependent on the nanoparticle volume fraction.... Read More about Modeling the onset of thermosolutal convective instability in a non-Newtonian nanofluid-saturated porous medium layer.

Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects (2020)
Journal Article
Beg, O., Venkatadri, K., Prasad, V., Beg, T., Kadir, A., & Leonard, H. (2020). Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects. Materials Science and Engineering: B, 261, 114772. https://doi.org/10.1016/j.mseb.2020.114722

We present a mathematical and numerical study of the transient Marangoni thermo-convection flow of an
electrically conducting Newtonian fluid in an isotropic Darcy porous rectangular semiconductor melt
enclosure with buoyancy and internal heat gene... Read More about Numerical simulation of hydromagnetic Marangoni convection flow in a Darcian porous semiconductor melt enclosure with buoyancy and heat generation effects.

Electro-osmotic nanofluid flow in a curved microchannel (2020)
Journal Article
Narla, V., Tripathi, D., & Beg, O. (2020). Electro-osmotic nanofluid flow in a curved microchannel. Chinese Journal of Physics, 67, 544-558. https://doi.org/10.1016/j.cjph.2020.08.010

Biological mechanisms offer significant improvement in the efficiency of next generation energv systems. Motivated by new developments in distensible pumping systems, ionic electro-kinetic manipulation and nanoscale liquids(“nanofluids"), in the pres... Read More about Electro-osmotic nanofluid flow in a curved microchannel.

Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study (2020)
Journal Article
Beg, O., Beg, T., Ferdows, M., Vasu, B., Kadir, A., Leonard, H., & Kuharat, S. (2021). Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study. International Journal of Applied Electromagnetics and Mechanics, 65(2), 371-403. https://doi.org/10.3233/JAE-201508

Unsteady viscous two-dimensional magnetohydrodynamic micropolar flow, heat and mass transfer from an infinite vertical surface with Hall
and Ion-slip currents is investigated theoretically and numerically. The simulation presented is motivated by el... Read More about Unsteady nonlinear magnetohydrodynamic micropolar transport phenomena with hall and ion-slip current effects : numerical study.

Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation (2020)
Journal Article
Gaffar, S., Khan, B., Beg, O., Kadir, A., & Prasad, V. (2020). Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation. Computational Thermal Sciences, 12(4), 329-344. https://doi.org/10.1615/ComputThermalScien.2020033860

Thermal coating of components with non-Newtonian materials is a rich area of chemical and process
mechanical engineering. Many different rheological characteristics can be simulated for such coatings with a
variety of different mathematical models.... Read More about Computation of Eyring-Powell micropolar convective boundary layer flow from an inverted non-isothermal cone : thermal polymer coating simulation.

Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions (2020)
Journal Article
Mishra, S., Shamshuddin, M., Beg, O., & Kadir, A. (2020). Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions. International Journal of Modern Physics B, 34(18), 2050165. https://doi.org/10.1142/S0217979220501659

In the present communication, laminar, incompressible, hydromagnetic flow of
an electrically conducting non-Newtonian (Sisko) fluid over a bi-directional stretching sheet in
a porous medium is studied theoretically. Thermal radiation flux, homogene... Read More about Adomain computation of radiative-convective bi-directional stretching flow of a magnetic non-Newtonian fluid in porous media with homogeneous-heterogeneous reactions.

Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects (2020)
Journal Article
Kuharat, S., Beg, O., Kadir, A., Vasu, B., Beg, T., & Jouri, W. (2020). Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects. Nanoscience and Technology: An International Journal, 11(2), 141-167. https://doi.org/10.1615/NanoSciTechnolIntJ.2020031257

Nanofluids are increasingly being deployed in numerous energy applications owing to their impressive thermal enhancement properties. Motivated by these developments in the current study we present finite volume numerical simulations of natural c... Read More about Computation of gold-water nanofluid natural convection in a three-dimensional tilted prismatic solar enclosure with aspect ratio and volume fraction effects.

Entropy generation of tangent hyperbolic nanofluid over a circular cylinder in the presence of nonlinear Boussinesq approximation : a non-similar solution (2020)
Journal Article
Basha, H., Sivaraj, R., Prasad, V., & Beg, O. (2021). Entropy generation of tangent hyperbolic nanofluid over a circular cylinder in the presence of nonlinear Boussinesq approximation : a non-similar solution. Journal of Thermal Analysis and Calorimetry, 143(3), 2273-2289. https://doi.org/10.1007/s10973-020-09981-5

The analysis of entropy generation has received notable attention
in the study of nanofluids because the prime objective of nanofluids is to admit high heat fluxes. The entropy production can be utilized to generate the
entropy in any irreversible... Read More about Entropy generation of tangent hyperbolic nanofluid over a circular cylinder in the presence of nonlinear Boussinesq approximation : a non-similar solution.

Mathematical modelling of triple diffusion in natural convection flow in a vertical duct with Robin boundary conditions, viscous heating and chemical reaction effects (2020)
Journal Article
Umavathi, J., & Beg, O. (2020). Mathematical modelling of triple diffusion in natural convection flow in a vertical duct with Robin boundary conditions, viscous heating and chemical reaction effects. Journal of Engineering Thermophysics, 29, 348-373. https://doi.org/10.1134/S1810232820020162

The triple-diffusive convective flow (thermal diffusion and dual species diffusion) in a viscous fluid flowing within a vertical duct is investigated subject to Robin boundary conditions at the duct walls. Viscous heating and homoge... Read More about Mathematical modelling of triple diffusion in natural convection flow in a vertical duct with Robin boundary conditions, viscous heating and chemical reaction effects.

Melting heat transfer analysis of electrically conducting nanofluid flow over an exponentially shrinking/stretching porous sheet with radiative heat flux under magnetic field (2020)
Journal Article
Venkatadri, K., Gaffar, S., Rajarajeswari, P., Prasad, V., Beg, O., & Khan, B. (2020). Melting heat transfer analysis of electrically conducting nanofluid flow over an exponentially shrinking/stretching porous sheet with radiative heat flux under magnetic field. Heat Transfer, 49(8), 4281-4303. https://doi.org/10.1002/htj.21827

Modern magnetic nanomaterials processing operations are progressing rapidly and require
increasingly sophisticated mathematical models for their optimization. Stimulated by such
developments, in this article, a theoretical and computational study o... Read More about Melting heat transfer analysis of electrically conducting nanofluid flow over an exponentially shrinking/stretching porous sheet with radiative heat flux under magnetic field.

Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects (2020)
Journal Article
Kuharat, S., Beg, O., Kadir, A., & Vasu, B. (2020). Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects. Arabian Journal for Science and Engineering, 45, 9075-9093. https://doi.org/10.1007/s13369-020-04678-1

As a model of nanofluid direct absorber solar collectors (nano-DASCs), the present article describes
recent numerical simulations of steady-state nanofluid natural convection in a two-dimensional
enclosure. Incompressible laminar Newtonian viscous... Read More about Computation of metallic nanofluid natural convection in a two-dimensional solar enclosure with radiative heat transfer, aspect ratio and volume fraction effects.

Electroosmotic flow in a microchannel containing a porous medium with complex wavy walls (2020)
Journal Article
Tripathi, D., Bhushan, S., & Beg, O. (2020). Electroosmotic flow in a microchannel containing a porous medium with complex wavy walls. Journal of Porous Media, 23(5), 477-495. https://doi.org/10.1615/JPorMedia.2020026114

In present paper, we simulate the electro-kinetic transport of aqueous solution through a microchannel containing porous media. The micro-channel walls are simulated as complex wavy
surface and are modelled by superimposing the three wave functions... Read More about Electroosmotic flow in a microchannel containing a porous medium with complex wavy walls.

A review on recent advancements in the hemodynamics of nano-drug delivery systems (2020)
Journal Article
Beg, O., Tripathi, J., Vasu, B., Gorla, R., Murthy, P., & Saikrishnan, P. (2020). A review on recent advancements in the hemodynamics of nano-drug delivery systems. Nanoscience and Technology: An International Journal, 11(1), 73-98. https://doi.org/10.1615/NanoSciTechnolIntJ.2020033448

Cardiovascular disease (CVD) is a leading cause of mortality and morbidity in developed
countries. CVD is produced by atherosclerotic lesions that reduce arterial lumen size through
plaque formation and arterial thickening. This decreases blood flo... Read More about A review on recent advancements in the hemodynamics of nano-drug delivery systems.

Effects of thermophysical properties on heat transfer at the interface of two immisicible fluids in a vertical duct: numerical study (2020)
Journal Article
Beg, O., & Umavathi, J. (2020). Effects of thermophysical properties on heat transfer at the interface of two immisicible fluids in a vertical duct: numerical study. International Journal of Heat and Mass Transfer, 154, 119613. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119613

A comprehensive theoretical and numerical investigation is presented for two fluids with different physical
properties. The effects of buoyancy and viscous heating are addressed. Non-isothermal wall conditions are
applied at the walls. The front an... Read More about Effects of thermophysical properties on heat transfer at the interface of two immisicible fluids in a vertical duct: numerical study.

Biomathematical model for gyrotactic free-forced bioconvection with oxygen diffusion in near-wall transport within a porous medium fuel cell (2020)
Journal Article
Nima, N., Ferdows, M., Beg, O., Kuharat, S., & Alzahrani, F. (2020). Biomathematical model for gyrotactic free-forced bioconvection with oxygen diffusion in near-wall transport within a porous medium fuel cell. International Journal of Biomathematics, 13(4), 2050026. https://doi.org/10.1142/S1793524520500266

Bioconvection has shown significant promise for environmentally friendly, sustainable “green” fuel cell technologies.
The improved design of such systems requires continuous refinements in biomathematical modelling in conjunction
with laboratory an... Read More about Biomathematical model for gyrotactic free-forced bioconvection with oxygen diffusion in near-wall transport within a porous medium fuel cell.

Numerical solutions for axisymmetric non-Newtonian stagnation enrobing flow, heat and mass transfer with application to cylindrical pipe coating dynamics (2020)
Journal Article
Beg, O., Bhargava, R., Sharma, S., Beg, T., Shamshuddin, M., & Kadir, A. (2020). Numerical solutions for axisymmetric non-Newtonian stagnation enrobing flow, heat and mass transfer with application to cylindrical pipe coating dynamics. Computational Thermal Sciences, 12(1), 79-97. https://doi.org/10.1615/ComputThermalScien.2020026228

Heat and mass transfer in variable thermal conductivity micropolar axisymmetric stagnation enrobing flow on a cylinder is studied. Numerical solutions are obtained with an optimized variational finite element procedure and also a finite difference me... Read More about Numerical solutions for axisymmetric non-Newtonian stagnation enrobing flow, heat and mass transfer with application to cylindrical pipe coating dynamics.

Computation of transient radiative reactive thermo-solutal magnetohydrodynamic convection in inclined mhd hall generator flow with dissipation and cross diffusion (2020)
Journal Article
Beg, O., Sheri, S., Modugula, P., & Kadir, A. (2020). Computation of transient radiative reactive thermo-solutal magnetohydrodynamic convection in inclined mhd hall generator flow with dissipation and cross diffusion. Computational Thermal Sciences, 11(6), 541-563. https://doi.org/10.1615/ComputThermalScien.2019026405

The present article investigates the collective influence of chemical reaction, viscous dissipation and Hall current magnetic effects on timedependent radiative magnetohydrodynamic flow, heat and mass transfer from an inclined wall embedded in a homo... Read More about Computation of transient radiative reactive thermo-solutal magnetohydrodynamic convection in inclined mhd hall generator flow with dissipation and cross diffusion.