Skip to main content

Research Repository

Advanced Search

Prof Osman Beg's Outputs (449)

Cross diffusion and higher order chemical reaction effects on hydromagnetic copper-water nanofluid flow over a rotating cone with porous medium (2023)
Journal Article

Spin coating of engineering components with advanced functional nanomaterials which respond to magnetic fields is growing. Motivated by exploring the fluid dynamics of such processes, a mathematical model is developed for chemically reactive Cu−H2O m... Read More about Cross diffusion and higher order chemical reaction effects on hydromagnetic copper-water nanofluid flow over a rotating cone with porous medium.

Turbulent Lorentz heat flow visualization in radiative boundary layer regime (2023)
Journal Article
Suresha, S. P., Janardhana Reddy, G., Sreenivasulu, B., & Anwar Bég, O. (2023). Turbulent Lorentz heat flow visualization in radiative boundary layer regime. Numerical Heat Transfer, Part A Applications, 1-25. https://doi.org/10.1080/10407782.2023.2255934

Modern nuclear energy systems often employ MHD and feature radiative heat transfer. Motivated by studying the near-wall transport phenomena in such applications, the article examines the simultaneous influence of thermal radiative flux and magnetohyd... Read More about Turbulent Lorentz heat flow visualization in radiative boundary layer regime.

Hybrid algorithm for the classification of fractal designs and images (2023)
Journal Article
YU, Z., SOHAIL, A., JAMIL, M., BEG, O. A., & Tavares, J. (in press). Hybrid algorithm for the classification of fractal designs and images. Fractals, https://doi.org/10.1142/s0218348x23400030

The fractal patterns are recursive patterns and are self-similar in nature. The fractal geometry provides better understanding of natural patterns as compared to the Euclidean geometry. The fractal designs have been used extensively in the fields of... Read More about Hybrid algorithm for the classification of fractal designs and images.

Computation of micropolar nanofluid from a wedge with heterogeneous carbon/metallic nanoparticles, viscous dissipation and heat sink/source: rheological nanocoating flow simulation (2023)
Journal Article
Umavathi, J. C., Kumar, M. A., & Anwar Bég, O. (in press). Computation of micropolar nanofluid from a wedge with heterogeneous carbon/metallic nanoparticles, viscous dissipation and heat sink/source: rheological nanocoating flow simulation. International Journal of Modelling and Simulation, 1-17. https://doi.org/10.1080/02286203.2023.2237846

Motivated by nanotechnological coating applications, a theoretical study is presented for the laminar, steady-state, incompressible nonlinear boundary layer flow of a non-Newtonian nanofluid external to a wedge-shaped configuration. The wedge surface... Read More about Computation of micropolar nanofluid from a wedge with heterogeneous carbon/metallic nanoparticles, viscous dissipation and heat sink/source: rheological nanocoating flow simulation.

CFD simulation and visualization in aerospace engineering –applications in rocket module splashdown, jet engine gas dynamics and rocket combustion (2023)
Presentation / Conference
Beg, O. (2023, July). CFD simulation and visualization in aerospace engineering –applications in rocket module splashdown, jet engine gas dynamics and rocket combustion. Presented at International Conference on Recent Advances in Fluid Mechanics and Nanoelectronics (ICRAMFN) 2023, MIT, Bengaluru, India

In this keynote lecture we present several recent CFD simulations of complex aerospace fluid dynamics- specifically 3 cases: rocket module splashdown, jet engine gas dynamics and rocket methane combustion and flame dynamics. The ANSYS FLUENT/CFX plat... Read More about CFD simulation and visualization in aerospace engineering –applications in rocket module splashdown, jet engine gas dynamics and rocket combustion.

A critical review on micro-scale pumping based on insect-inspired membrane kinematics (2023)
Journal Article
Tripathi, D., Bhandari, D. S., & Anwar Bég, O. (2023). A critical review on micro-scale pumping based on insect-inspired membrane kinematics. Sensors and Actuators A: Physical, 360, https://doi.org/10.1016/j.sna.2023.114518

The membrane-based pumping mechanism is being increasingly deployed to meet the needs of medical, bio-engineering, microfabrication technology, microscale transport phenomena and other engineering applications due to its integrated functionalities. T... Read More about A critical review on micro-scale pumping based on insect-inspired membrane kinematics.

Enhancing Pharmacological Applications: Investigating Convective Heat Transfer in Nanoparticles within Blood Flow through CFD Simulation using ANSYS FLUENT (2023)
Presentation / Conference
Choglay, K., Anwar Bég, O., Kuharat, S., & Kadir, A. (2023, July). Enhancing Pharmacological Applications: Investigating Convective Heat Transfer in Nanoparticles within Blood Flow through CFD Simulation using ANSYS FLUENT. Presented at Glasgow University Computational Biology Conference 2023, Glasgow, Scotland

Efficient heat transfer in blood is a crucial aspect of various medical treatments that involve localized heating or cooling, such as Hyperthermia Treatment, Cryotherapy, and Hypothermia Treatment. Understanding the convective heat transfer in blood... Read More about Enhancing Pharmacological Applications: Investigating Convective Heat Transfer in Nanoparticles within Blood Flow through CFD Simulation using ANSYS FLUENT.

Computation of EMHD ternary hybrid non-Newtonian nanofluid over a wedge embedded in a Darcy-Forchheimer porous medium with zeta potential and wall suction/injection effects (2023)
Journal Article
Beg, A., Prakash, J., & Tripathi, D. (2023). Computation of EMHD ternary hybrid non-Newtonian nanofluid over a wedge embedded in a Darcy-Forchheimer porous medium with zeta potential and wall suction/injection effects. International Journal of Ambient Energy, 44(1), 2155-2169. https://doi.org/10.1080/01430750.2023.2224339

The field of engineering is witnessing an increasing number of applications for intelligent
electromagnetic nano-coatings. These recent advancements serve as the impetus for an
investigation into a theoretical and computational study of an unsteady... Read More about Computation of EMHD ternary hybrid non-Newtonian nanofluid over a wedge embedded in a Darcy-Forchheimer porous medium with zeta potential and wall suction/injection effects.

Numerical study of transient convective turbulent boundary layer flow along a vertical plate: analysis of kinetic energy and its dissipation rate (2023)
Journal Article
Suresha, S. P., Janardhana Reddy, G., Reddy, G. J., Kumar, M., Rani, H. P., & Anwar Bég, O. (in press). Numerical study of transient convective turbulent boundary layer flow along a vertical plate: analysis of kinetic energy and its dissipation rate. Waves in Random and Complex Media, 1-23. https://doi.org/10.1080/17455030.2023.2220821

The present article numerically investigates the turbulent buoyancy-driven (natural convection) flow along a vertical plate with a low Reynolds turbulence two-equation k-ε model. The deployed turbulence model is appropriate for low Reynolds number (L... Read More about Numerical study of transient convective turbulent boundary layer flow along a vertical plate: analysis of kinetic energy and its dissipation rate.

Computation of three-dimensional blood flow development in a 180O curved tube geometry (2023)
Journal Article
Chiang, C., Kao, R., Hung, T., & Beg, A. (2023). Computation of three-dimensional blood flow development in a 180O curved tube geometry. Journal of Mechanics in Medicine and Biology, 23(5), https://doi.org/10.1142/S0219519423500537

Computational blood flow studies are providing an increasingly important compliment to
clinical experiments in 21st century biomedical engineering. Motivated by probing deeper into
this topic, a theoretical and numerical study is presented of the f... Read More about Computation of three-dimensional blood flow development in a 180O curved tube geometry.