Skip to main content

Research Repository

Advanced Search

All Outputs (449)

Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media (2021)
Journal Article
Kumaran, G., Sivaraj, R., Prasad, V., Beg, O., Leung, H., & Kamalov, F. (2021). Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media. European Physical Journal Plus, 136(11), 1107. https://doi.org/10.1140/epjp/s13360-021-02099-z

Modern functional nanomaterials coating processes feature an increasing range of intelligent properties including rheology, biological (bio-inspired) modifications, elaborate thermophysical behaviour and complex chemical reactions which are needed fo... Read More about Numerical study of axisymmetric magneto-gyrotactic bioconvection in non-Fourier tangent hyperbolic nano-functional reactive coating flow of a cylindrical body in porous media.

Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects (2021)
Journal Article
Tripathi, J., Vasu, B., Beg, O., Gorla, R., & Kameswaran, P. (2021). Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects. Computers in Biology and Medicine, 139, 105009. https://doi.org/10.1016/j.compbiomed.2021.105009

Influenced by nano-drug delivery applications, the present article considers the collective
effects of hybrid biocompatible metallic nanoparticles (Silver and Copper), a stenosis and an aneurysm on
the unsteady blood flow characteristics in a cathe... Read More about Computational simulation of rheological blood flow containing hybrid nanoparticles in an inclined catheterized artery with stenotic, aneurysmal and slip effects.

Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface (2021)
Journal Article
Prakash, J., Tripathi, D., Beg, O., Tiwari, A. K., & Kumar, R. (2022). Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface. Heat Transfer, 51(2), 1746-1777. https://doi.org/10.1002/htj.22373

AbstractThis paper explores the combined effects of Coriolis force and electric force on the rotating boundary layer flow and heat transfer in a viscoplastic hybrid nanofluid from a vertical exponentially accelerated plate. The hybrid nanofluid compr... Read More about Thermo‐electrokinetic rotating non‐Newtonian hybrid nanofluid flow from an accelerating vertical surface.

Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study (2021)
Journal Article
Umavathi, J., & Beg, O. (2021). Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 236(3), 926-941. https://doi.org/10.1177/09544089211052025

Motivated by developments in thermal duct processing, an investigation is presented to study the behavior of viscous nanoparticle suspensions flowing in a vertical duct subject to Fourier-type conditions. The left wall temperature is kept lower than... Read More about Augmentation of heat transfer via nanofluids in duct flows using Fourier-type conditions : theoretical and numerical study.

Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium (2021)
Journal Article
Shahid, A., Bhatti, M., Beg, O., Animasaun, I., & Javid, K. (2021). Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium. International Journal of Modern Physics B, 35(29), 2150294. https://doi.org/10.1142/S0217979221502945

The current article presents a mathematical model for bi-directional convection
magnetohydrodynamic (MHD) tangent hyperbolic nanofluid flow from the upper horizontal
subsurface of a stretching parabolic surface to a non-Darcian porous medium, as a... Read More about Spectral computation of reactive bi-directional hydromagnetic non-Newtonian convection flow from a stretching upper parabolic surface in non-Darcy porous medium.

Perturbation and MAPLE quadrature computation of thermo-solutal dissipative reactive convective flow in a geothermal duct with Robin boundary conditions (2021)
Book Chapter
Umavathi, J., Beg, O., Vasu, B., & Gorla, R. (2022). Perturbation and MAPLE quadrature computation of thermo-solutal dissipative reactive convective flow in a geothermal duct with Robin boundary conditions. In P. Mahanta, P. Kalita, A. Paul, & A. Banerjee (Eds.), Advances in thermofluids and renewable energy : select proceedings of TFRE 2020 (3-21). Singapore: Springer. https://doi.org/10.1007/978-981-16-3497-0_1

Buoyancy-driven reactive flows feature extensively in geophysics, materials processing and energy systems. In respect to the latter, geothermal energy holds great promise in India and other Asian geographical locations and offers immense resources in... Read More about Perturbation and MAPLE quadrature computation of thermo-solutal dissipative reactive convective flow in a geothermal duct with Robin boundary conditions.

Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects (2021)
Journal Article
Shamshuddin, M., Mabood, F., & Beg, O. (2021). Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects. International Journal of Modelling and Simulation, https://doi.org/10.1080/02286203.2021.1977531

The objective of this study is to develop a mathematical model for chemically reacting magnetic nanofluid flow
with thermophoretic diffusion, Brownian motion and Ohmic magnetic heating in a Darcian permeable regime.
The current flow model also cons... Read More about Thermomagnetic reactive ethylene glycol-metallic nanofluid transport from a convectively heated porous surface with ohmic dissipation, heat source, thermophoresis and Brownian motion effects.

Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump (2021)
Journal Article
El Gendy, M., Beg, O., Kadir, A., Islam, M., & Tripathi, D. (2021). Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump. Journal of Mechanics in Medicine and Biology, 21(8), 2150058. https://doi.org/10.1142/S0219519421500585

Motivated by recent developments in bio-inspired medical engineering microscale pumps, in
the present article a 3-dimensional sequential simulation of a peristaltic micro-pump is
described to provide deeper insight into the hydromechanics of lamina... Read More about Computational fluid dynamics simulation and visualization of Newtonian and non-Newtonian transport in a peristaltic micro-pump.

Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study (2021)
Journal Article
Beg, O., Beg, T., Khan, W. A., & Uddin, M. J. (2022). Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study. Heat Transfer, 51(1), 1040-1061. https://doi.org/10.1002/htj.22341

AbstractA mathematical model is developed for viscous slip flow and heat transfer in water/Ethylene glycol‐based nanofluids containing metallic oxide nanoparticles, through a converging/diverging channel. We adopt the single‐phase Tiwari–Das model. T... Read More about Multiple slip effects on nanofluid dissipative flow in a converging/diverging channel: A numerical study.

An executable method for an intelligent speech and call recognition system using a machine learning-based approach (2021)
Journal Article
Rajarajeswari, P., & Beg, O. (2021). An executable method for an intelligent speech and call recognition system using a machine learning-based approach. Journal of Mechanics in Medicine and Biology, 21(07), 2150055. https://doi.org/10.1142/S021951942150055X

This paper describes a novel call recognizer system based on the machine learning
approach. Current trends, intelligence, emotional recognition and other factors are important
challenges in the real world. The proposed system provides robustness wi... Read More about An executable method for an intelligent speech and call recognition system using a machine learning-based approach.

Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects (2021)
Journal Article
Tripathi, J., Vasu, B., Beg, O., & Gorla, R. (2022). Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects. Microvascular Research, 139, 104241. https://doi.org/10.1016/j.mvr.2021.104241

The present study considers the mathematical modelling of unsteady non-Newtonian hydro-magnetic nanohemodynamics through a rigid cylindrical artery featuring two different stenoses (composite and irregular).
The Ostwald-De Waele power-law fluid mode... Read More about Numerical simulation of the transport of nanoparticles as drug carriers in hydromagnetic blood flow through a diseased artery with vessel wall permeability and rheological effects.

Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study (2021)
Journal Article
Chandrawat, R., Joshi, V., & Beg, O. (2021). Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study. Journal of Nanofluids, 10(3), 431-446. https://doi.org/10.1166/jon.2021.1792

The hydrodynamics of immiscible micropolar fluids are important in a variety of engineering problems, including biofluid dynamics of arterial blood flows, pharmacodynamics, Principle of Boundary layers, lubrication technology, short waves for heat-co... Read More about Ion slip and hall effects on generalized time-dependent hydromagnetic Couette flow of immiscible micropolar and dusty micropolar fluids with heat transfer and dissipation : a numerical study.

Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles (2021)
Journal Article
Chandanam, V., Venkata Lakshmi, C., Venkatadri, K., Beg, O., & Prasad, V. (2021). Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles. European Physical Journal Plus, 136(8), 885. https://doi.org/10.1140/epjp/s13360-021-01881-3

A numerical study is presented of laminar viscous magnetohydrodynamic natural convection
flow in a triangular shaped porous enclosure filled with electrically conducting air and
containing two hot obstacles. The mathematical model is formulated in... Read More about Numerical simulation of thermal management during natural convection in a porous triangular cavity containing air and hot obstacles.

Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method (2021)
Journal Article
Chandrawat, R. K., Joshi, V., Beg, O., & Tripathi, D. (2022). Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method. Heat Transfer, 51(1), 99-139. https://doi.org/10.1002/htj.22299

AbstractIn this paper, the unsteady flow of two immiscible fluids with heat transfer is studied numerically with a modified cubic B‐spine Differential Quadrature Method. Generalized Couette flow of two immiscible dusty (fluid–particle suspension) and... Read More about Computation of unsteady generalized Couette flow and heat transfer in immiscible dusty and non‐dusty fluids with viscous heating and wall suction effects using a modified cubic B‐spine differential quadrature method.

Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions (2021)
Journal Article
Umavathi, J., Patil, S., Mahanthesh, B., & Beg, O. (2021). Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems, 235(3-4), 67-81. https://doi.org/10.1177/23977914211036562

The aim of the present work is to examine the impact of magnetized nanoparticles (NPs) in
enhancement of heat transport in a tribological system subjected to convective type heating (Robin) boundary
conditions. The regime examined comprises the squ... Read More about Unsteady squeezing flow of a magnetized nano-lubricant between parallel disks with Robin boundary conditions.

Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction (2021)
Journal Article
Akter, S., Ferdows, M., Beg, T., Beg, O., Kadir, A., & Sun, S. (2021). Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction. Journal of Computational Design and Engineering, 8(4), 1158-1171. https://doi.org/10.1093/jcde/qwab038

A theoretical model is developed for steady magnetohydrodynamic (MHD) viscous flow resulting from a moving
semi-infinite flat plate in an electrically conducting nanofluid. Thermal radiation and magnetic induction effects are
included in addition t... Read More about Spectral relaxation computation of electroconductive nanofluid convection flow from a moving surface with radiative flux and magnetic induction.

Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model (2021)
Journal Article
Dubey, A., Vasu, B., Beg, O., & Gorla, R. (2021). Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model. Microvascular Research, 138, 104221. https://doi.org/10.1016/j.mvr.2021.104221

Existing computational fluid dynamics studies of blood flows have
demonstrated that the lower wall stress and higher oscillatory shear index might be the cause
of acceleration in atherogenesis of vascular walls in hemodynamics. To prevent the chanc... Read More about Finite element computation of magneto-hemodynamic flow and heat transfer in a bifurcated artery with saccular aneurysm using the Carreau-Yasuda biorheological model.

Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses (2021)
Journal Article
Roy, A., & Beg, O. (2021). Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses. Applied Mathematics and Computation, 410, 126485. https://doi.org/10.1016/j.amc.2021.126485

The present article examines the transport of species in streaming blood through
a rigid artery in the presence of multi-irregular stenosis. The carrier fluid i.e., blood is
assumed to be non-Newtonian fluid (Casson’s viscoplastic model is used) an... Read More about Asymptotic study of unsteady mass transfer through a rigid artery with multiple irregular stenoses.

Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation (2021)
Journal Article
Tripathi, J., Vasu, B., Beg, O., & Gorla, R. (2021). Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 235(10), 1175-1196. https://doi.org/10.1177/09544119211026095

Two-dimensional laminar hemodynamics through a diseased artery featuring an overlapped
stenosis was simulated theoretically and computationally. This study presented a mathematical model for the unsteady
blood flow with hybrid biocompatible nanopar... Read More about Unsteady hybrid nanoparticle-mediated magneto-hemodynamics and heat transfer through an overlapped stenotic artery : biomedical drug delivery simulation.

Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects (2021)
Journal Article
Mallikarjuna, B., Krishna, G., Srinivas, J., Beg, O., & Kadir, A. (2022). Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects. Journal of Thermal Science and Engineering Applications, 14(1), 011008. https://doi.org/10.1115/1.4050935

Electromagnetic high-temperature therapy is popular in medical engineering treatments for various diseases include tissue damage ablation repair, hyperthermia and oncological illness diagnosis. The simulation of transport phenomena in such applicatio... Read More about Spectral numerical study of entropy generation in magneto-convective viscoelastic biofluid flow through poro-elastic media with thermal radiation and buoyancy effects.